Amershi, S., Weld, D. S., Vorvoreanu, M., Fourney, A., Nushi, B., Collisson, P., Suh, J., Iqbal, S. T., Bennett, P. N., Inkpen, K., Teevan, J., Kikin-Gil, R., & Horvitz, E. (2019).
Guidelines for human–AI interaction. Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems.
https://doi.org/10.1145/3290605.3300233
Andrienko, N., Andrienko, G., Adilova, L., & Wrobel, S. (2022).
Visual analytics for human-centered machine learning.
IEEE Computer Graphics and Applications, 42, 123–133.
https://doi.org/10.1109/MCG.2021.3130314
Babenko, V., Chebanova, N., Ryzhikova, N., Rudenko, S., Birchenko, N. (2018). Research into the process of multi-level management of enterprise production activities with taking risks into consideration.
Eastern-European Journal of Enterprise Technologies, 1, 3 (91), 4-12.
http://dx.doi.org/10.15587/1729-4061.2018.123461
Babenko, V. (2020). Enterprise Innovation Management in Industry 4.0: Modeling Aspects. Emerging Extended Reality Technologies for Industry 4.0: Early Experiences with Conception, Design, Implementation, Evaluation and Deployment, pp. 141–163.
https://doi.org/10.1002/9781119654674.ch9
Babenko, V., Pravotorova, O., Yefremova, N., Popova, S., Kazanchuk, I., Honcharenko, V. (2020). The Innovation Development in China in the Context of Globalization. WSEAS Transactions on Business and Economics, Vol. 17, 2020, Art. #25, pp. 523-531.
https://doi.org/10.37394/23207.2020.17.51
Corbató
, F. J., & Vyssotsky, V. A. (1965). Introduction and overview of the Multics system. In
Proceedings of the November 30–December 1, 1965, Fall Joint Computer Conference, Part I (pp. 185–196). Association for Computing Machinery.
https://doi.org/10.1145/1463891.1463912
Donnat, C., & Holmes, S. (2018).
Tracking network dynamics: A survey using graph distances.
The Annals of Applied Statistics, 12(2), 971–1012.
https://doi.org/10.1214/18‑AOAS1176
Engel, F. R. K. (1988).
Magnetic tape - from the early days to the present.
Journal of the Audio Engineering Society, 36(7/8), 606–616. Retrieved from:
https://www.aes.org/journal/
Gontareva, N., Babenko, V., Shmatko, N., Litvinov, O., Obruch, H. (2020). The Model of Network Consulting Communication at the Early Stages of Entrepreneurship.
WSEAS Transactions on Environment and Development, 16(39), 390-396.
https://doi.org/10.37394/232015.2020.16.39
He, K., Zhang, X., Ren, S., & Sun, J. (2016).
Deep residual learning for image recognition. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 770–778).
https://doi.org/10.1109/CVPR.2016.90
Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. R. (2012).
Improving neural networks by preventing co-adaptation of feature detectors. arXiv:1207.0580.
https://arxiv.org/abs/1207.0580
Hrabovskyi, Y., Babenko, V., Al'boschiy, O., Gerasimenko, V. (2020). Development of a Technology for Automation of Work with Sources of Information on the Internet. WSEAS Transactions on Business and Economics, 17 (25), 231-240.
https://doi.org/10.37394/23207.2020.17.25
Huang
, Y. L., et al. (2022).
ExBrainable: An open-source GUI for CNN-based EEG decoding and model interpretation. arXiv:2201.04065.
https://arxiv.org/abs/2201.04065
Jin, H., Wagner, M. W., Ertl-Wagner, B., & Khalvati, F. (2022). An educational graphical user interface to construct convolutional neural networks for teaching artificial intelligence in radiology.
Canadian Association of Radiologists Journal. Advance online publication.
https://doi.org/10.1177/08465371221144264
Kashchena N., Chmil H., Nesterenko I., Lutsenko O., Kovalevska N. (2024). Diagnostics as a Tool for Managing Behavior and Economic Activity of Retailers in the Conditions of Digital Business Transformation.
Data-Centric Business and Applications. Lecture Notes on Data Engineering and Communications Technologies. 194, 149–173. Springer, Cham.
https://doi.org/10.1007/978-3-031-53984-8_7
Kyrylieva L., Polyvana L., Kashchena N., Naumova T., Akimova N. (2023). Organizational aspects of forming an information and analytical service for the management of trade enterprises in the period of digitalization. Financial and Credit Activity Problems of Theory and Practice. Vol. 3 No. 50, 127–138. [in Ukrainian]
https://doi.org/10.55643/fcaptp.3.50.2023.3996
Kuznetsov, A., Kavun, S., Smirnov, O., Babenko, V., Nakisko, O., Kuznetsova, K. (2019). Malware Correlation Monitoring in Computer Networks of Promising Smart Grids. 2019 IEEE 6th International Conference on Energy Smart Systems, ESS 2019 - Proceedings, 8764228, 347-352.
https://doi.org/10.1109/ESS.2019.8764228
Maynard, M. M. (2003). Univac I. In Encyclopedia of Computer Science (pp. 1813–1814). John Wiley & Sons.
Nesterenko I., Kashchena N., Chmil H., Chumak O., Shtyk Yu., Nesterenko O., Kovalevska N. (2024). Devising a methodological approach to identifying the economic potential of production costs for eco-innovative products.
Eastern-European Journal of Enterprise Technologies, 3, 13 (129), 6–15.
https://doi.org/10.15587/1729-4061.2024.304805
Savytska, N., Babenko, V., Chmil, H., Priadko, O., & Bubenets, I. (2023). Digitalization of Business Development Marketing Tools in the B2C Market.
Journal of Information Technology Management, 15(1), 124-134.
https://doi.org/ 10.22059/jitm.2023.90740
Savytska, N.; Zhehus O.; Polevych K.; Prydko O. & Bubenets I. (2024). Enterprise Resilience Behavioral Management in a Decision Support System.
Journal of Information Technology Management, 16 (4), 100-121.
https://doi.org/10.22059/jitm.2024.99053
Shorikov, A.F., Babenko, V.A. (2014). Optimization of assured result in dynamical model of management of innovation process in the enterprise of agricultural production complex. Economy of Region, Issue 1, pp. 196-202.
http://dx.doi.org/10.17059/2014-1-18
Shtal, T.,
Proskurnina, N., Savytska, N.,
Mykhailova, M.,
Bubenets, I. (2023). Analysis of the Vectors of Digital Transformation of Retail Trade in Ukraine: Determination Methodology and Trends.
Economic Affairs, 68(Special Issue), 939-945.
https://doi.org/10.46852/0424-2513.2s.2023.42
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014).
Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine Learning Research, 15, 1929–1958.
https://doi.org/10.5555/2627435.2670313
Wang, A. (2025).
A Review of Convolutional Neural Networks: Evolution, Applications, and Future Directions.
Applied and Computational Engineering, 166.
https://doi.org/10.17605/OSF.IO/XXXXXX
luster-based web servers. Indones. J. Electr. Eng. Comput. Sci, 19(1), 510-517.