

Visual System for Configuring Machine Learning Models to Support IT

Management and Decision-Making

Vitalina Babenko*

*Corresponding author, Prof., Kharkiv National University of Radio Electronics, Kharkiv 61166,

Ukraine; Kharkiv National Automobile and Highway University, Kharkiv, 61002, Ukraine. E-mail:

vita.babenko@gmail.com

Andrii Brazhnykov

8440, Creekside green dr, apt 5302, Spring, TX, 77389, USA. E-mail: Brazhnicov@gmail.com

Nataliia Gavkalova

Professor, Institute of Production Systems Organization, Warsaw University of Technology, Warsaw,

02-524, Poland. E-mail: nataliia.gavkalova@pw.edu.pl

Serhii Rudenko

Associate Professor, State Biotechnological University, Kharkiv, 61002, Ukraine; Kharkiv National

University of Internal Affairs, Kharkiv, 61080, Ukraine. E-mail: sr7000388@gmail.com

Marianna Oliskevych

Professor, Ivan Franko National University of Lviv, Lviv, 79000, Ukraine. E-mail: olisk@ukr.net

Olena Fridman

Associate Professor, V. N. Karazin Kharkiv National University, Kharkiv, 61002, Ukraine. E-mail:

o.fridman@karazin.ua

Dariia Babenko

Senior Lecturer, O. M. Beketov National University of Urban Economy in Kharkiv, Kharkiv, 61002,

Ukraine. E-mail: dary.babenko@gmail.com

Journal of Information Technology Management, 2025, Vol. 17, Issue 4, pp. 117-135 Received: June 14, 2025

Published by the University of Tehran, College of Management Received in revised form: August 26, 2025

doi: https://doi.org/10.22059/jitm.2025.105486 Accepted: September 14, 2025

Article Type: Research Paper Published online: November 01, 2025

© Authors

doi:%20https://doi.org/10.22059/jitm.2025.105486
https://orcid.org/0000-0002-4816-4579
https://orcid.org/0009-0000-4066-757X
https://orcid.org/0000-0003-1208-9607
https://orcid.org/0000-0002-2874-1957
https://orcid.org/0000-0003-1264-1684
https://orcid.org/0000-0002-7437-6372
https://orcid.org/0000-0002-3154-1622
https://creativecommons.org/licenses/by-nc/4.0/

Visual System for Configuring Machine Learning…/ Vitalina Babenko 118

https://jitm.ut.ac.ir/

Abstract

Deep learning models have become indispensable across scientific and business domains,

offering new approaches to problem-solving but requiring substantial technical expertise for

their implementation. This article presents StudySupport, an open-source visual system for

configuring and training machine learning models via a graphical interface rather than

traditional coding. The system enables users to manage the entire pipeline - from data

preprocessing and model construction to optimization and performance evaluation - while

maintaining flexibility for advanced customization. By lowering the technical entry barrier,

the StudySupport system facilitates the adoption of machine learning in IT management and

organizational decision-making. The proposed framework supports faster integration of data-

driven methods into enterprise information systems, reduces implementation costs, and

empowers managers, analysts, and educators to leverage artificial intelligence in digital

transformation processes. The study contributes to the field of information technology

management by bridging the gap between advanced machine learning techniques and their

practical application in business, education, and decision-support systems.

Keywords: Visual System, StudySupport system, Machine Learning, Decision-support

Model, IT Management, Decision-Making

Introduction

Over the past few years, artificial intelligence and neural networks have permeated almost

every aspect of life. And although theoretical calculations in this field have been conducted

for a long time, the opportunity to develop practical programs emerged relatively recently,

when, in the early 2000s, sufficient data accumulated and computing power and its cost

reached a certain level.

Neural networks are used very widely, you directly interact with them when you search

for something in a search engine, find out the route to the point you need (taking into account

traffic jams, of course), check the weather forecast for the coming days, enter a parking lot

with license plate recognition, and if you are lucky, you can even talk to a neural network.

These are the simplest examples that we encounter every day. Neural networks are no less

widely used in professional fields: sociology, journalism, linguistics, and many other areas

(Amershi et al., 2019; Babenko, 2013, 2020; Gontareva et al., 2020; Kyrylieva et al., 2023).

At the same time, almost all modern web services, computer programs, and mobile

applications are based on a graphical interface. The next most popular interface is the

command line, which is used only in specific areas, most often related to programming

(Andrienko et al., 2022). This is quite logical, given that working in the command line itself

is, in many ways, programming, but not everyone has this skill, because acquiring it requires

several months, if not years, of painstaking study of the subject.

Journal of Information Technology Management, 2025, Vol. 17, Issue 4, 119

https://jitm.ut.ac.ir/

Despite the high demand for neural networks, the only way to build them remains

programming. In this paper, we explore the possibilities of integrating an alternative way of

working with neural networks - a graphical interface- and also try to understand why such

programs did not appear earlier.

Literature Review

Modern research in machine learning indicates a growing need for tools that simplify the

process of building and tuning models for users without deep programming training. A

significant part of the work (Huang et al., 2022) focuses on developing graphical user

interfaces (GUIs) that enable visual construction of neural networks. Such solutions make the

process of tuning architectures more intuitive and accessible, especially for educational and

research purposes.

A significant contribution to the development of such systems has been made within the

framework of the Barista project (Klemm et al., 2018), which provides an environment for

designing and training deep neural networks using flowcharts. Similar approaches are also

actively used in the educational environment - for example, a tool for teaching the basics of

convolutional neural networks in medicine (O'Shea & Nash, 2015).

Some research focuses on creating explainable systems that not only simplify model

tuning but also aid in interpreting their results (Shorikov et al., 2014; Baldi & Sadowski, 2013).

This is especially relevant for critical industries where transparency of the decision-making

process is required (Babenko et al., 2018; 2020).

However, most existing tools have limited functionality: they are either focused on a

narrow range of tasks or do not allow the integration of new architectural elements without

code. This lays the groundwork for further research toward universal systems (Kashchena et

al., 2024) that combine the flexibility of traditional programming with the ease of use of

graphical interfaces.

Working with data. There are many ways to store data. Each of them requires its own

Dataloader that accounts for their specific storage (Hinton et al., 2012). However, in practice,

in most tasks, only a few different types are encountered (Corbató & Vyssotsky, 1965). Here are

some of them:

• Both input data and markup are stored in the same text file,

• Data and markup are stored in different files,

• The data is a set of files (e.g., images or documents), and the markup is stored in a

separate text file. and

Visual System for Configuring Machine Learning…/ Vitalina Babenko 120

https://jitm.ut.ac.ir/

• Data is a set of files whose location determines the markup (for example, images of

different classes are in different folders).

The data type also needs to be considered, as different types may require different

processing (He et al., 2016). For example, if an image needs to be reduced to a specific size

before being processed by the model, then for text documents, such a transformation is

undefined. However, the storage methods may coincide (Engel, 1988). The most common

types can also be briefly listed:

• Numerical characteristics (actual, integer), strings with a small number of values

(classes), as well as their lists:

• Image

• Video

• Text documents

• Audio

The Dataloader device is also affected by the task type, which determines the markup

type (Michael & Maynard, 2003). There are not so many of them anymore, although new ones

appear regularly.

Methodology

The global goal of this study is to create open-source programs that allow creating and

configuring any deep learning models with a teacher from scratch, without requiring anything

beyond a dataset. However, profound teaching has been rapidly developing for more than a

dozen years now. During this time, many tricks and tools have been invented, and

implementing them all requires a lot of time, since all the code is written by the author alone.

Therefore, the task at hand is to create a prototype of a universal application with a graphical

interface, demonstrating key opportunities, adding most of the tools, and identifying areas that

need additional processing.

Solving each machine learning problem can be divided into three semantic parts that are

solved practically separately: creating a dataloader class that provides data in the desired

format, writing neural network models that accept input data from the dataloader, and

selecting metrics and analyzing their graphs and results. Consider each subtask in more detail.

Also, because predicting all possible ways to store data and task types won't work (at

least because new task types appear), in this work, let's add the possibility for the user to load

their own dataloader into the program using a built-in text editor.

Journal of Information Technology Management, 2025, Vol. 17, Issue 4, 121

https://jitm.ut.ac.ir/

Results

Creating a model

A deep learning model is a complex, nonlinear function composed of simple, basic functions -

layers. Among them, nonlinearities and regularization are usually treated separately (Corbato

& Vyssotsky, 1965), but in this study, we treat them on a par with ordinary layers, such as

linear, convolutional, etc.

Neural networks can be represented as a directed graph, with some "special" vertices,

incident edges entering "from nowhere" or "to nowhere"; this is how neural networks are

usually visualized in scientific works (Savytska et al., 2023, 2024). Edges “from nowhere” are

the very first layers that receive input data from the dataloader, and edges “to nowhere” feed

their output into the loss function.

This visualization is really very convenient and makes it easy to understand how the

model is arranged, if you know how each layer is arranged separately (Hrabovskyi et al., 2020).

This is what the model editor in our program looks like: On the canvas, which can be moved,

rectangles-layers are placed, and by selecting them, you can adjust the parameters, look at the

dimensions of the input and output, or study the device in more detail by reading the

description of the layer.

By analogy with the previous section, in order for the application to be as flexible as

traditional model programming, it is possible to add the function of creating your own layers,

loss functions, and optimization algorithms (Pilavakis, 1989). To do this, you need to

replicate the dataloader functionality, adjusting it to the specific details. However, in this

work, this function will not be added: the principal possibility of adding it has been

demonstrated, and implementing the function would have to be at the expense of other

capabilities of the prototype.

Interpretation of metrics

Training a neural network is the task of optimizing a function, namely the loss function,

chosen based on the task. Most often, the same loss functions are used, for example, for

classification or regression tasks; the squared mean or cross-entropy is often used (Wagner,

2022). Therefore, it is necessary to add as many "popular" loss functions as possible to the

program library so that they can be used without programming.

After choosing the loss function, the neural network training begins. Most often, if

mistakes are made somewhere and the model is trained incorrectly, this becomes clear from

the behavior of the loss function or other metrics (Shtal et al., 2023). Therefore, during

Visual System for Configuring Machine Learning…/ Vitalina Babenko 122

https://jitm.ut.ac.ir/

training, it is almost always prescribed to build graphs for various metrics (Donnat & Holmes,

2018). Our program also automatically constructs and updates graphs during training.

Justification

A typical implementation of a learning algorithm in PyTorch looks like this: (Algorithm 1).

Algorithm 1 Schematic of the neural network training algorithm on PyTorch

dataloader =

dataloader _ init ()

model = model_init

() loss = loss_init ()

optimal = optimal_init (

model.params) for data

in dataloader out =

model(data) loss_value =

loss(out)

loss_value.backward ()

optim.step ()

update_plots (

loss_value) end for

Logistic system congestion is a significant problem in many cities worldwide. It poses a

name. Note that the initializations of the objects here do not depend on each other in any way

(except for the optimizer object, the only limitation of which is the need to be initialized after

the initialization of the neural network model), which allows you to configure them

independently of each other. It is precisely this property that gives the graphical interface

great potential: each algorithmic detail can be configured separately in its own window,

tailored to its specific information.

In addition, the graphical interface has many advantages over the traditional approach.

Here are some of them: challenges and negative consequences for individuals, communities,

and economies. Here is a deeper look at the problem of traffic congestion:

Friendly error messages

The graphical interface also allows you to interact with the model before the model is ready

for use (Kuznetsov et al., 2019; Nesterenko et al., 2024). This approach allows the output of

information about the model to be generated directly during construction (for example, the

total number of model parameters, the size of the tensor produced by each layer, etc.)

(Pietrołaj & Blok, 2024). This information also helps identify search errors, allowing them to be

corrected before launching neural networks.

Journal of Information Technology Management, 2025, Vol. 17, Issue 4, 123

https://jitm.ut.ac.ir/

Except for error prompts, the program may give tips on use. For example, in which cases

worth using this or that other layer of the neural network, nonlinearity, or regularization, to

provide references to theoretical justification, as well as describe hyperparameters, what they

affect, and how to set them correctly to configure.

Small entry threshold

When done correctly, the advantages described above allow a much lower entry threshold.

The absence-necessity program already does this, and, if available in the program, references

and explanations reduce the amount of necessary technical knowledge, because some

essential information can be found in the app itself.

Absolutely, an unprepared user is unlikely to cope with writing non-trivial neural

networks, but understanding the device will be much easier if you don't have to get distracted

by programming, and all the necessary theory is in one place.

About the program

The StudySupport system provides practical value for IT management by lowering the barrier

to adopting AI methods in decision-support environments. Organizations can integrate

machine learning models into enterprise systems such as ERP, CRM, or data analytics

platforms without requiring specialized programming expertise (O’Shea & Nash, 2015). This

facilitates more rapid prototyping, reduces implementation costs, and enhances the role of

managers and analysts in driving digital transformation. In educational contexts, the system

can also be used to train future IT professionals, bridging the gap between theoretical AI

concepts and applied management practices. Window creation and discovery projects

At launch, programs open a start window that allows users to create new projects or open

existing ones. The project is represented in specific directories by a folder containing the

project configuration file, project config.json, which includes information about the project.

Upon creation, a new project generates a corresponding file, leaving the main configuration

file, main_config.json. For works with file configurations, a special Config class was created.

It is arranged so that any parameter changes are automatically saved to the corresponding file.

Project window

The project window is divided into two parts: the main and the container menu. More of the

screen is occupied by the main, which is divided into five tabs: Settings, Layout Data, Data,

Model, and Training. One tab is active at any given time. On the right side of the screen, the

menu container contains the latest menu object the user interacted with.

For convenience, two classes were implemented: MenuWidget and WidgetWithMenu.

For each widget that inherited from WidgetWithMenu, you can realize your class that

Visual System for Configuring Machine Learning…/ Vitalina Babenko 124

https://jitm.ut.ac.ir/

inherited from MenuWidget and pass it as a parameter when calling the super functions, along

with an instance of the class container. Then, when calling the activate_menu method in the

corresponding menu container, the menu of this widget will be displayed. Yes, each tab has

its own menu and when switching tabs, the menu of the one that was open.

"Settings" tab

Allows changing some values in the project configuration file.

The "Markup" tab data »

In this tab, you can mark up an image for detection objects.

"Data" tab

Has two divisions: Loader Data and Reprocessing

"Loader" tab data »

Loader data is built into a Python syntax-highlighted text editor. Traditionally, to create a

data loader, a programmer creates a special class that inherits from the Dataset class in torch.

Utils.data module. This class has to determine such methods:

• __ init __ - the method that is responsible for initialization data

• __ getitem __ is a method that returns an element dataset by index

• __len__ is a method that returns the size of a dataset

"Recycling" tab

For augmentation, there is a Preprocessing tab. In the left pane of the main screen, a raw

image is displayed, which can be selected by clicking the corresponding button. On the right,

the posted image after processing. Between them is a space where applicable transformations

are located. Transformation can be added or removed using the corresponding buttons in the

menu.

Currently, such a transformation:

– InvertImg - Applies a "negative" to an image, subtracting the value of each pixel out of

255

– Equalize - Approaching distribution values pixels to a uniform size, thus increasing

contrast

– CLAHE - Applies local adaptive histogram

– ToSepia - Applies filter sepia

– GaussianBlur - Applies a Gaussian filter

Journal of Information Technology Management, 2025, Vol. 17, Issue 4, 125

https://jitm.ut.ac.ir/

– HueSaturationValue - Randomly changes the hue, saturation, and brightness of each pixel.

– RandomContrast - Randomly changes the image contrast

– Resize - Changes the size of the image

When choosing a widget for each conversion in the menu on the right, the relevant

settings parameters appear. Clicking the "Refresh" button will run the incoming image

through the provided transforms and update the transformed image.

To save the current dataloader and the applied layers, reprocessing is necessary. Click on

the corresponding button at the very bottom of the screen

Model Tab

Contains two subtabs: Designer and Options learning. The first is intended to create neural

networks, and in the second, we can choose function errors and optimization algorithms.

"Designer" tab

On the main screen, the canvas dimensions prevent it from being fully displayed, so at any

given time, only a portion is shown (Jin et al., 2022). This part can be moved using the mouse

or sliders located at the right and bottom of the canvas. The tab menu contains buttons that

allow creating layers of neural networks (Fig. 1). By default, on the canvas, incoming and

outgoing layers are located, the first one passes the neural network data, and the second

receives the result of the work as input for the neural networks; unlike other layers, it's

impossible to delete them.

The layer appears as a rectangle on the canvas with a fixed size. In the middle, the text is

located in the type < layer type> _ <id>. In the upper and lower parts of the layer are a certain

number of buttons, depending on the layer type. The top buttons represent incoming layer

data, and the bottom represents the weekend. To create communication between the two

layers, first press one of the output buttons in the first layer, then the input button in the

second layer. After this, draw a line between the corresponding buttons to denote the

connection between the layers. Each input button can accept at most one connection; thus,

between the connective lines and the input buttons, a single communication is enough to

select the appropriate button. Each layer stores information about which layers it is connected

to, which is why the model is built in linear time.

Each layer can be moved relative to the canvas by clicking on it and holding down the left

mouse button while moving to the desired location. When selecting a layer in the menu

container located on the right, it opens the settings menu parameters for this layer. At the

moment, the program is built with the following types of layers :

1. Layers – functions activations (Non-linear activations) (Zhang et al., 2016; Zhang &

Zhao, 2024).

Visual System for Configuring Machine Learning…/ Vitalina Babenko 126

https://jitm.ut.ac.ir/

Such layers receive on Exit tensor X = (x and), and ∈ N k and return tensor (f (x i)), and ∈

N k, where f - function activation, also called nonlinearity

• ReLU - f (x) = max (x, 0)

• Sigmoid -

2. Convolutional layers (Wang, 2025). Apply to the input tensor an n-dimensional

convolution. The input tensor can have dimensions n + 1 or n + 2. Passes through a

window of size ((1), C in, k 1, k 2,..., k n), also called the kernel over the entire input tensor

along with offsets of size ((0), 0, p1, p 2,..., p n) with a step ((1),,,,,, applying a linear

transformation of the window value. Gaps depending on the axis ((0), can be added

between the kernel elements. 0, d 1, d 2,..., d n) If the input is a tensor of size ((N), C in,

D1, D2,..., Dn), the output tensor will have :

 (1)

Parameters :

– in _ channels (C in) - Number of channels in the input tensor

– out _ channels (C out) — quantity channels output tensor

– kernel_size ∗ (k 1,..., k n) - size kernels

– stride ∗ (s 1,..., s n) - kernel step for each axis

– padding ∗ (p 1,..., p n) - Dimensions indents for each axis

– padding _ mode - method filling indentations. Maybe take four values :

∗ zeros - Fills indents zeros :

∗ reflect - Reflects value indents of border tensor

Journal of Information Technology Management, 2025, Vol. 17, Issue 4, 127

https://jitm.ut.ac.ir/

∗ replicate - each value indentation equal to the nearest element from the main tensor

∗ circular - Fills indents on circle along each axes

– dilation ∗ (d 1,..., d n) - Size gaps between elements kernels

– groups - number groups, on which are breaking down incoming and weekend channels

– bias - if True, adds to the exit displacement being studied.

∗ — parameter can admit one number a, What will be interpreted as a vector of size n :

(a,..., a)

• Conv1d - One-dimensional roll

• Conv2d - Two-dimensional roll

3. Linear - Fully connected linear layer: applies linear transformation to incoming data, y =

xA T + b. If on Exit is served, the tensor dimensions

(d 1,..., d n, H in), On exit will come out tensor dimensions (d 1,..., d n, H out), in accordance

with the matrix A having size H in × H out. Parameters :

– in_features (H in) - size incoming data

– out_features (H out) - size weekend data

– bias — if True, adds to the exit displacement that is being studied.

4. Unifying Pooling layers are used to form an incoming tensor n-measurable association by

a specific rule. The incoming tensor may have dimensions n + 1 or n + 2. Passing window

size ((1), C,k 1, k 2,..., k n), also invited core on to everything incoming tensor along with

indents size ((0), 0, p 1, p 2,..., p n) with a step ((1),,,,,, applying transformation to values

windows, in case transformation — operation taking maximum by meaning windows (

max pooling). Between kernel elements can be added intervals that depend on axes ((0),

0, d 1, d 2,..., d n)

Visual System for Configuring Machine Learning…/ Vitalina Babenko 128

https://jitm.ut.ac.ir/

If at the entrance given a tensor of size ((N), C, D 1, D 2,..., D n), the output tensor will

have size where is calculated by the formula:

 (2)

Parameters:

– kernel_size ∗ (k 1,..., k n) - size kernels

– stride ∗ (s 1,..., s n) - kernel step for each axis

– padding ∗ (p 1,..., p n) - Dimensions indents for each axis

– dilation ∗ (d 1,..., d n) - Size gaps between core elements

– ceil_mode - if True, for calculation size, the output tensor will be rounded up

∗ - parameter can admit one chilo (a), which will be interpreted as a vector of size n : (a,...,a)

• MaxPool2d - Two-dimensional maximum pooling

5. • Dropout (Srivastava, et al., 2014) - Special layer that, under time teaching, resets

random elements in the incoming tensor with probability p.

6. Constants - Layers where nothing is accepted at the entrance, that return a fixed value.

7. • ToType - A layer that casts a tensor to a given data type.

8. Arithmetic operations - such layers receive two layers as input, apply an arithmetic

operation to them. Support broadcasting (Link to documentation). PyTorch, e.g., if

possible, leads tensors up to a standard dimension if they differ.

9. Change tensor shapes • Flatten - Smoothes the adjacent tensor axes by one. In other

words, if the input is a tensor of size (a 1,..., a n, b 1,..., b k, c 1,..., c m), at the output we get

a tensor of size (a 1,..., a n, b 1 × b 2 ×··· × b k, c 1,...).

Each layer corresponds to a class in your Torch model. nn module, let's call it the

working module. All necessary functions and properties layers are implemented in the base

class Layer, so when creating a new layer, you need only to register widgets that accept

parameters, and if the working module is not implemented in the module n.n. Libraries like

torch require creating a class that inherits from nn—module in which the forward method will

be implemented.

Also, when creating a layer, you can adjust the number of input and output buttons by

passing a list of their names, initialization methods, and the imitate method (Layer). During

https://pytorch.org/docs/stable/notes/broadcasting.html#broadcasting-semantics
https://pytorch.org/docs/stable/notes/broadcasting.html#broadcasting-semantics
https://pytorch.org/docs/stable/notes/broadcasting.html#broadcasting-semantics
https://pytorch.org/docs/stable/notes/broadcasting.html#broadcasting-semantics
https://pytorch.org/docs/stable/notes/broadcasting.html#broadcasting-semantics
https://pytorch.org/docs/stable/notes/broadcasting.html#broadcasting-semantics

Journal of Information Technology Management, 2025, Vol. 17, Issue 4, 129

https://jitm.ut.ac.ir/

training, each layer takes as input and returns dictionaries, with keys corresponding to the

response button names. Since the majority of workers' modules take as input and return one

tensor at a time, by default, each layer accepts a dictionary of the form { ′ in ′ : input },

transmits the value input into the working module, obtaining the tensor at the output, and then

returns a dictionary { ′ out ′ : output }.

"Settings" tab training

In this tab, you can select and configure function losses, as well as the optimization algorithm.

The basic screen consists of two lines: the first corresponds to the function losses, and the

second to the optimization algorithm. In the future, additional lines can be added that

correspond, for example, to the planner speed teaching (learning rate scheduler).

There are two buttons in each row; the first one displays the name of the current function,

loss, or optimizer. If you click on it, on the right, the options menu will open. Clicking the

second button labeled Change opens a selection menu for functions, losses, or the optimizer,

respectively.

Function losses are function that accepts entry foresight input models, data, together with

the target values, and return a number or vector that characterizes quality predictions.

Currently added features lose work on the following principle:

They have exactly one parameter – reduction - which may take the values none, mean, or

sum.

Let x = (x 1,..., x N) - prediction models, y = (y 1,..., y N), where N - size batcha. Then,

if value reduction - none :

l (x, y) = L = { l 1,..., l N } ⊤, where l n = f (x n, yes n) (3)

Here f – function losses for scalar values.

If the reduction has a value, then

 (4)

And if the value is equal to the sum, then

l (x, y) = X l and

l and ∈ L

Currently added such functions losses :

Visual System for Configuring Machine Learning…/ Vitalina Babenko 130

https://jitm.ut.ac.ir/

• MSELoss - f (x, y) = (x - y) 2

• BCELoss - f (x, y) = y · log x + (1 − y) · log(1 − x).

"Learning" tab

After that, once the dataloader was initialized, selected transformations for reworking,

created, compiled, and tested the model, and chose the function, losses, and the optimization

algorithm, you can launch the training. To do this, in the "Training" tab, press the Start button.

After this, training for Algorithm 1 will begin.

At the bottom of the tab is an indicator of progress that shows the current era and the

percentage processed data on it (Fig. 2). In the middle, a schedule shows values, functions,

errors in training and validation samples, and above a menu that allows interaction with the

graph: change the scale, change the colors of the lines, and more.

Discussion

Even though users can already create and configure neural networks with the help of Learn 2

Learn, the program is still in its early stages of development: many functions regularly used

by machine learning engineers were not added, which makes the StudySupport system

challenging to use in practice. Among the tasks that will be added in the future, you can list:

• Possibility of device settings on which the model is trained, and in the future, the

possibility of connecting to remote servers and their computational capacities

• Adding opportunities creation layers and functions, losses by analogy with the current

method of creating a data loader

• Possibility creation layers and functions, loss graphical method - combining already

existing layers into blocks and saving them on the device

• Adding libraries built-in standard datasets such as MNIST, CIFAR, Coco, etc., and

dataloaders built for them

• Possibility of adding additional metrics on graphs during training

• Parsing existing models created in the traditional way

• Adding libraries' previous models, such as ResNet, DenseNet, etc.

• Improvement design.

Journal of Information Technology Management, 2025, Vol. 17, Issue 4, 131

https://jitm.ut.ac.ir/

Conclusion

This study introduced the StudySupport, a visual system for configuring deep learning models

that reduces reliance on programming and enables broader adoption of AI technologies. The

system supports IT management processes by streamlining data handling, model

configuration, and performance evaluation. Future improvements will focus on expanding

integration with enterprise decision-support platforms, adding libraries of pre-trained models

and datasets, and enhancing interoperability with cloud-based resources. These developments

will strengthen the system's role as a bridge between advanced AI research and its application

in IT management, business decision-making, and digital transformation initiatives.

Thus, a GUI application was created that allows you to create and configure arbitrary

deep learning models from scratch with virtually no code. The only element configured

traditionally was designed to demonstrate different approaches to visual configuration and the

possibility of switching to a GUI without losing the flexibility of the command-line interface.

The developed program allows the user to control the entire learning process: data

loading, neural network construction, selection of optimization methods, and quality analysis.

The system is built so it is easy to supplement and improve. The main achievement of the

work is the development of a base layer class, which allows adding an arbitrary data

transformation layer to the program with ease.

Although the graphical interface's capabilities have not been fully implemented, the

system already automates a large part of the user's work by default, displaying additional

information about objects on the screen that would otherwise require extra effort to obtain.

Visual System for Configuring Machine Learning…/ Vitalina Babenko 132

https://jitm.ut.ac.ir/

Figure 1. Designer neural networks

Figure 2. Progress training and schedule functions mistakes

Journal of Information Technology Management, 2025, Vol. 17, Issue 4, 133

https://jitm.ut.ac.ir/

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this article.

Funding

The author(s) received no financial support for the research, authorship, and/or publication of

this article.

References

 Amershi, S., Weld, D. S., Vorvoreanu, M., Fourney, A., Nushi, B., Collisson, P., Suh, J., Iqbal, S. T.,

Bennett, P. N., Inkpen, K., Teevan, J., Kikin-Gil, R., & Horvitz, E. (2019). Guidelines for human–
AI interaction. Proceedings of the 2019 CHI Conference on Human Factors in Computing

Systems. https://doi.org/10.1145/3290605.3300233

Andrienko, N., Andrienko, G., Adilova, L., & Wrobel, S. (2022). Visual analytics for human-centered

machine learning. IEEE Computer Graphics and Applications, 42, 123–133.

https://doi.org/10.1109/MCG.2021.3130314

Babenko, V., Chebanova, N., Ryzhikova, N., Rudenko, S., Birchenko, N. (2018). Research into the

process of multi-level management of enterprise production activities with taking risks into
consideration. Eastern-European Journal of Enterprise Technologies, 1, 3 (91), 4-12.

http://dx.doi.org/10.15587/1729-4061.2018.123461

Babenko, V. (2020). Enterprise Innovation Management in Industry 4.0: Modeling Aspects. Emerging
Extended Reality Technologies for Industry 4.0: Early Experiences with Conception, Design,

Implementation, Evaluation and Deployment, pp. 141–163.

https://doi.org/10.1002/9781119654674.ch9

Babenko V. A. (2013). Formation of economic-mathematical model for process dynamics of
innovative technologies management at agroindustrial enterprises. Actual Problems of Economics.

139 (1), 182-186. Retrieved from: https://www.scopus.com/record/display.uri?eid=2-s2.0-

84929991982&origin=inward&txGid=c69f0746cede0da5f287471cd688 08af

Babenko, V., Pravotorova, O., Yefremova, N., Popova, S., Kazanchuk, I., Honcharenko, V. (2020). The

Innovation Development in China in the Context of Globalization. WSEAS Transactions on

Business and Economics, Vol. 17, 2020, Art. #25, pp. 523-531.

https://doi.org/10.37394/23207.2020.17.51

Baldi, P., & Sadowski, P. J. (2013). Understanding dropout. In Advances in Neural Information

Processing Systems (Vol. 26). Retrieved from:

https://papers.nips.cc/paper_files/paper/2013/hash/14acdf64020072a74d1cf17d7e6f5576-

Abstract.html

Corbató, F. J., & Vyssotsky, V. A. (1965). Introduction and overview of the Multics system. In

Proceedings of the November 30–December 1, 1965, Fall Joint Computer Conference, Part I (pp.

185–196). Association for Computing Machinery. https://doi.org/10.1145/1463891.1463912

Donnat, C., & Holmes, S. (2018). Tracking network dynamics: A survey using graph distances. The

Annals of Applied Statistics, 12(2), 971–1012. https://doi.org/10.1214/18-AOAS1176

Engel, F. R. K. (1988). Magnetic tape - from the early days to the present. Journal of the Audio

Engineering Society, 36(7/8), 606–616. Retrieved from: https://www.aes.org/journal/

Gontareva, N., Babenko, V., Shmatko, N., Litvinov, O., Obruch, H. (2020). The Model of Network

Consulting Communication at the Early Stages of Entrepreneurship. WSEAS Transactions on

Environment and Development, 16(39), 390-396. https://doi.org/10.37394/232015.2020.16.39

https://doi.org/10.1145/3290605.3300233
https://doi.org/10.1109/MCG.2021.3130314
http://dx.doi.org/10.15587/1729-4061.2018.123461
https://doi.org/10.1002/9781119654674.ch9
https://www.scopus.com/record/display.uri?eid=2-s2.0-84929991982&origin=inward&txGid=c69f0746cede0da5f287471cd688
https://www.scopus.com/record/display.uri?eid=2-s2.0-84929991982&origin=inward&txGid=c69f0746cede0da5f287471cd688
https://doi.org/10.37394/23207.2020.17.51
https://papers.nips.cc/paper_files/paper/2013/hash/14acdf64020072a74d1cf17d7e6f5576-Abstract.html
https://papers.nips.cc/paper_files/paper/2013/hash/14acdf64020072a74d1cf17d7e6f5576-Abstract.html
https://doi.org/10.1145/1463891.1463912
https://doi.org/10.1214/18%1eAOAS1176
https://www.aes.org/journal/
https://doi.org/10.37394/232015.2020.16.39

Visual System for Configuring Machine Learning…/ Vitalina Babenko 134

https://jitm.ut.ac.ir/

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 770–778).

https://doi.org/10.1109/CVPR.2016.90

Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. R. (2012). Improving

neural networks by preventing co-adaptation of feature detectors. arXiv:1207.0580.

https://arxiv.org/abs/1207.0580

Hrabovskyi, Y., Babenko, V., Al'boschiy, O., Gerasimenko, V. (2020). Development of a Technology

for Automation of Work with Sources of Information on the Internet. WSEAS Transactions on

Business and Economics, 17 (25), 231-240. https://doi.org/10.37394/23207.2020.17.25

Huang, Y. L., et al. (2022). ExBrainable: An open-source GUI for CNN-based EEG decoding and

model interpretation. arXiv:2201.04065. https://arxiv.org/abs/2201.04065

Jin, H., Wagner, M. W., Ertl-Wagner, B., & Khalvati, F. (2022). An educational graphical user interface
to construct convolutional neural networks for teaching artificial intelligence in radiology.

Canadian Association of Radiologists Journal. Advance online publication.

https://doi.org/10.1177/08465371221144264

Kashchena N., Chmil H., Nesterenko I., Lutsenko O., Kovalevska N. (2024). Diagnostics as a Tool for
Managing Behavior and Economic Activity of Retailers in the Conditions of Digital Business

Transformation. Data-Centric Business and Applications. Lecture Notes on Data Engineering and

Communications Technologies. 194, 149–173. Springer, Cham. https://doi.org/10.1007/978-3-

031-53984-8_7

Klemm, S., et al. (2018). Barista: A graphical tool for designing and training deep neural networks.

arXiv:1802.04626. https://arxiv.org/abs/1802.04626

Kyrylieva L., Polyvana L., Kashchena N., Naumova T., Akimova N. (2023). Organizational aspects of

forming an information and analytical service for the management of trade enterprises in the

period of digitalization. Financial and Credit Activity Problems of Theory and Practice. Vol. 3 No.

50, 127–138. [in Ukrainian] https://doi.org/10.55643/fcaptp.3.50.2023.3996

Kuznetsov, A., Kavun, S., Smirnov, O., Babenko, V., Nakisko, O., Kuznetsova, K. (2019). Malware

Correlation Monitoring in Computer Networks of Promising Smart Grids. 2019 IEEE 6th

International Conference on Energy Smart Systems, ESS 2019 - Proceedings, 8764228, 347-352.

https://doi.org/10.1109/ESS.2019.8764228

Maynard, M. M. (2003). Univac I. In Encyclopedia of Computer Science (pp. 1813–1814). John Wiley

& Sons.

Nesterenko I., Kashchena N., Chmil H., Chumak O., Shtyk Yu., Nesterenko O., Kovalevska N. (2024).
Devising a methodological approach to identifying the economic potential of production costs for

eco-innovative products. Eastern-European Journal of Enterprise Technologies, 3, 13 (129), 6–

15. https://doi.org/10.15587/1729-4061.2024.304805

O’Shea, K., & Nash, R. (2015). An introduction to convolutional neural networks. arXiv:1511.08458.

https://arxiv.org/abs/1511.08458

Pietrołaj, M. & Blok, M. (2024). Resource constrained neural network training. Scientific Reports, 14,

Article 2421. https://doi.org/10.1038/s41598-024-52356-1

Savytska, N., Babenko, V., Chmil, H., Priadko, O., & Bubenets, I. (2023). Digitalization of Business

Development Marketing Tools in the B2C Market. Journal of Information Technology

Management, 15(1), 124-134. https://doi.org/ 10.22059/jitm.2023.90740

Savytska, N.; Zhehus O.; Polevych K.; Prydko O. & Bubenets I. (2024). Enterprise Resilience

Behavioral Management in a Decision Support System. Journal of Information Technology

Management, 16 (4), 100-121. https://doi.org/10.22059/jitm.2024.99053

https://doi.org/10.1109/CVPR.2016.90
https://arxiv.org/abs/1207.0580
https://doi.org/10.37394/23207.2020.17.25
https://arxiv.org/abs/2201.04065
https://doi.org/10.1177/08465371221144264
https://doi.org/10.1007/978-3-031-53984-8_7
https://doi.org/10.1007/978-3-031-53984-8_7
https://arxiv.org/abs/1802.04626
https://doi.org/10.55643/fcaptp.3.50.2023.3996
https://doi.org/10.1109/ESS.2019.8764228
https://doi.org/10.15587/1729-4061.2024.304805
https://arxiv.org/abs/1511.08458
https://doi.org/10.1038/s41598-024-52356-1
https://doi.org/%2010.22059/jitm.2023.90740
https://doi.org/10.22059/jitm.2024.99053

Journal of Information Technology Management, 2025, Vol. 17, Issue 4, 135

https://jitm.ut.ac.ir/

Shorikov, A.F., Babenko, V.A. (2014). Optimization of assured result in dynamical model of

management of innovation process in the enterprise of agricultural production complex. Economy

of Region, Issue 1, pp. 196-202. http://dx.doi.org/10.17059/2014-1-18

Shtal, T., Proskurnina, N., Savytska, N., Mykhailova, M., Bubenets, I. (2023). Analysis of the Vectors
of Digital Transformation of Retail Trade in Ukraine: Determination Methodology and Trends.

Economic Affairs, 68(Special Issue), 939-945. https://doi.org/10.46852/0424-2513.2s.2023.42

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: A
simple way to prevent neural networks from overfitting. Journal of Machine Learning Research,

15, 1929–1958. https://doi.org/10.5555/2627435.2670313

Zhang, S., Lu, J., & Zhao, H. (2024). Deep network approximation: Beyond ReLU to diverse
activation functions. Journal of Machine Learning Research, 25(1), 1–39. Retrieved from:

https://jmlr.org/papers/volume25/23-0912/23-0912.pdf

Wang, A. (2025). A Review of Convolutional Neural Networks: Evolution, Applications, and Future

Directions. Applied and Computational Engineering, 166.

https://doi.org/10.17605/OSF.IO/XXXXXX

luster-based web servers. Indones. J. Electr. Eng. Comput. Sci, 19(1), 510-517.

Bibliographic information of this paper for citing:

Babenko, Vitalina; Brazhnykov, Andrii; Gavkalova, Nataliia; Rudenko, Serhii; Oliskevych,

Marianna; Fridman, Olena; Babenko, Dariia (2025). Visual System for Configuring Machine

Learning Models to Support IT Management and Decision-Making. Journal of Information

Technology Management, 17 (4), 117-135. https://doi.org/10.22059/jitm.2025.105486

Copyright © 2025, Vitalina Babenko, Andrii Brazhnykov, Nataliia Gavkalova, Serhii

Rudenko, Marianna Oliskevych, Olena Fridman, Dariia Babenko.

http://dx.doi.org/10.17059/2014-1-18
https://www.scopus.com/authid/detail.uri?authorId=57201343113
https://www.scopus.com/authid/detail.uri?authorId=57203925512
https://www.scopus.com/authid/detail.uri?authorId=57203925512
https://www.scopus.com/authid/detail.uri?authorId=57201259130
https://www.scopus.com/authid/detail.uri?authorId=58302850800
https://doi.org/10.46852/0424-2513.2s.2023.42
https://doi.org/10.5555/2627435.2670313
https://jmlr.org/papers/volume25/23-0912/23-0912.pdf
https://doi.org/10.17605/OSF.IO/XXXXXX
https://doi.org/10.22059/jitm.2025.105486

