Chakravarty, A., Jain, A., & Saxena, A. K. (2022). Disease Detection of Plants using Deep Learning Approach—A Review. 2022 11th International Conference on System Modeling & Advancement in Research Trends (SMART), 1285–1292. https://doi.org/10.1109/smart55829.2022.10047097
Chen, Z., Wu, R., Lin, Y., Li, C., Chen, S., Yuan, Z., Chen, S., & Zou, X. (2022). Plant Disease Recognition Model Based on Improved YOLOv5. Agronomy, 12(2), 365. https://doi.org/10.3390/agronomy12020365
Goyal, R., Kumar, K., Sharma, V., Bhutia, R., Jain, A., & Kumar, M. (2024). Quantum-Inspired Optimization Algorithms for Scalable Machine Learning in Edge Computing. 2024 4th International Conference on Technological Advancements in Computational Sciences (ICTACS), 1888–1892. https://doi.org/10.1109/ictacs62700.2024.10840586
Kapida, P. P., & Arul, P. (2025). Automated rice disease detection using a deep learning approach with convolutional neural networks. In L. He & X. Hao (Eds.), Fifth International Conference on Optical Imaging and Image Processing (ICOIP 2025) (p. 99). SPIE. https://doi.org/10.1117/12.3075699
Kolli, R. K., Eeti, S., Mahimkar, S., Chintha, V., Goel, P., & Jain, A. (2024). Securing WSN-IOT with Firefly Algorithm and Machine Learning for Intrusion Detection System. 2024 1st International Conference on Advanced Computing and Emerging Technologies (ACET), 1–7. https://doi.org/10.1109/acet61898.2024.10730248
Mohanty, S. P., Hughes, D. P., & Salathé, M. (2016). Using Deep Learning for Image-Based Plant Disease Detection. Frontiers in Plant Science, 7. https://doi.org/10.3389/fpls.2016.01419
Sachi, S., Jain, J., Jain, A., Patel, U. K., Bhatnagar, A., & Jain, A. (2024). Hy_PSO: Hybrid Algorithm for Lung Cancer Diagnosis and Prognosis. 2023 International Conference on Smart Devices (ICSD), 1–5. https://doi.org/10.1109/icsd60021.2024.10751524
Singh, M. K., & Kumar, A. (2023). Cucumber Leaf Disease Detection and Classification Using a Deep Convolutional Neural Network. Journal of Information Technology Management, 15(Special Issue: EIntelligent and Security for Communication, Computing Application (ISCCA-2022)). https://doi.org/10.22059/jitm.2023.95248
Sudhakar, B., Sikrant, P. A., Prasad, M. L., Latha, S. B., Kumar, G. R., Sarika, S., & Shaker Reddy, P. C. (2024). Brain Tumor Image Prediction from MR I
mages Using CNN-Based Deep Learning Networks. Journal of Information Technology Management, 16(1). https://doi.org/10.22059/jitm.2024.96374
Wang, Q., Cheng, M., Xiao, X., Yuan, H., Zhu, J., Fan, C., & Zhang, J. (2021). An image segmentation method based on deep learning for damage assessment of the invasive weed Solanum rostratum Dunal. Computers and Electronics in Agriculture, 188, 106320. https://doi.org/10.1016/j.compag.2021.106320
Zhang, J., Zhao, C., & Gao, W. (2020). Optimization-Inspired Compact Deep Compressive Sensing. IEEE Journal of Selected Topics in Signal Processing, 14(4), 765–774. https://doi.org/10.1109/jstsp.2020.2977507