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Abstract

To minimize losses in the agricultural sector and ensure food security, early diagnosis and
identification of sugarcane diseases are essential. Conventional diagnostic approaches are
often costly, labor-intensive, and reliant on the subjective expertise of individuals in
recognizing pathogenic microorganisms. Recent improvements in machine learning and deep
learning provide viable solutions for automating the data analysis and classification of plant
diseases through image-based analysis. This study presents a comprehensive analysis of
image-based sugarcane disease identification systems, emphasizing various computational
techniques to achieve optimal results, and applies these methods in a mobile application. In
this study, the authors review relevant case studies, highlighting key developments in disease
detection using computer vision technologies, and demonstrating how these approaches
improve diagnostic accuracy while enhancing computational efficiency and reducing resource
consumption. The authors aim to guide future research and development by offering methods
to overcome existing challenges. This assessment serves as a resource for academics and
practitioners, providing insights into current practices and suggesting ways to enhance
automated plant disease detection systems for mobile and handheld devices.
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Introduction

The global population is projected to reach 9.8 billion by 2050. This growth poses a
significant challenge for agriculture. The sector needs to boost food production to support a
quickly growing and increasingly urban population. Climate change also poses a challenge by
causing more unpredictability in farming conditions. Due to this, there is a need for new and
sustainable solutions to enhance agricultural productivity and secure food for future
generations.

One promising method is precision agriculture, which leverages advanced technologies to
optimize farming operations. Precision agriculture utilizes virtual analytics and next-
generation sensors to enhance crop vyields by providing specific, actionable insights.
Advanced sensing technologies have become imperative to this technique. Applications like
weed detection, plant disease identification, and pest tracking have significantly benefited
from these technologies. Conventionally, plant disease monitoring has relied on manual
examination, which was labor-intensive and challenging to scale for large plantations. To
overcome, researchers and practitioners have employed various techniques, including
molecular biology, biotechnology, and manual diagnostic technologies. However, these
methods often encompass high costs and complexity.

The incorporation of Internet of Things (IoT) devices, sensors, drones, Al, and blockchain
technology is bringing a significant transformation in agriculture. 10T devices and sensors
continuously accumulate data on machinery performance, soil conditions, and environmental
factors. Drones equipped with advanced cameras and multispectral sensors deliver specific
information on crop health and potential. Blockchain technology works with transparency and
traceability in the agricultural supply chain, assuring the authenticity and safety of food
products. By minimizing resource waste, enabling real-time decision-making, and optimizing
inputs according to particular requirements, the merging of artificial intelligence not only
supports sustainability but also increases agricultural productivity.

Machine learning and Deep Learning are at the forefront of this technological revolution.
ML is a branch of Al that uses algorithms to classify patterns in the data and then improve the
overall performance. Researchers have been using standard ML algorithms such as “Support
Vector Machine (SVM)”, “K-nearest Neighbor (K-NN)”, and “Artificial Neural Network
(ANN)” to detect plant diseases. However, these standard algorithms usually work with
tabular data, not image-based information.

Deep Learning, a more advanced subfield of Al, typically uses CNN architecture, which
utilizes multiple layers of a neural network system to classify image data and recognize



Sugarcane Disease Identification Using Mobile.../ Ajay Chakravarty 200

patterns of interest. This approach has proven powerful in detecting plant diseases through the
analysis of leaf images to classify disease signs and symptoms with high accuracy. Modern
computer vision tools based on DL have extensively advanced the field of plant disease
detection, providing automated and precise evaluation. Some practices, such as data
augmentation and transfer learning, have also uplifted the capabilities of DL in this domain.

Literature Review

Image pre-processing is crucial for improving data quality and making images usable for
model training. Researchers utilize numerous pre-processing techniques, including noise
elimination, brightness adjustment, contrast leveling, and normalization. Pre-processing
techniques used by Zhang et al. (2020) and Goyal et al. (2024) incorporated simple image
enhancement techniques like blur reduction and geometric corrections, which significantly
improved the performance of machine learning models by eliminating image artifacts and
standardizing input data. Sachi et al. (2024) explored a higher level of pre-processing, which
utilized methods like histogram equalization and adaptive thresholding to improve the
readability of images. Kolli et al. (2024) enlightened that segmentation involves partitioning
the image into meaningful regions to extract features related to plant diseases. Chakravarty et
al. (2022) enlightened that the traditional methods use thresholding and field observations. In
contrast, cutting-edge procedures use deep learning to identify patterns in a dataset. Chen et
al. (2022) introduced an optimized version of YOLOV5 that classifies disease in the rubber
tree. They used a dataset that contained images of rubber trees and achieved an accuracy of
86.6%. Singh and Kumar (2023) explained the deep convolutional neural network
advancements in cucumber leaf diseases, incorporating the ResNet50 architecture, which has
shown high accuracy in segmenting plant images while keeping spatial data.

Feature extraction involves identifying and quantifying different features or attributes from
segmented images. Researchers have historically used hand-crafted features like texture,
colour, and shape descriptors. Wang et al. (2021) emphasized the efficiency of deep learning
models in automating feature extraction and directly accessing features from raw image data
and proposed a method that combines conventional feature extraction with deep learning
strategies to improve the accuracy. Sudhakar et al. (2024) discussed CNN- and SVM-based
models that pre-process data to train ML models, typically employing supervised learning
techniques for accurate brain tumor identification. Mohanty et al. (2016) explored a technique
that incorporated a CNN-based model, which worked on smartphones and was successfully
tested on various datasets, to leverage existing model knowledge through transfer learning.
Kapida and Arul (2025) explained about the automated rice disease detection system, which
recognized the disease at its early stages. Testing evaluates the model’s overall accuracy on
unseen data, using metrics such as precision, accuracy, recall, and F1-score, emphasizing the
need for strong testing protocols to ensure that models perform well on new and diverse
datasets.
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The development of ML models for plant disease detection is a multi-stage pipeline
involving data acquisition, pre-processing, segmentation, and feature extraction, culminating
in the training and testing phase. Recent improvements in Deep Learning and Machine
Learning have drastically improved these steps, making it easier to detect disease in plants.
Ongoing research continues to refine these methodologies, with a focal point on improving
data quality, model robustness, and practical deployment in real-world agricultural areas.

Methodology

Data Collection: This step comprised preparing image data, which included the collection of
images representing common diseases present in sugarcane plants. In this study, the sugarcane
image dataset was divided into two classes. The first class contained healthy samples, and the
second contained unhealthy samples. Table 1 presents the overall distribution.

Table 1. Distribution of the sugarcane disease dataset for the healthy and unhealthy classes.

S. No. Type of Disease Count of Images Distribution
1 Healthy 1200 50
2 Unhealthy Red root 845 25
3 Unhealthy Red Rust 678 25
4 Total 2723 100

The dataset consisted of two major classes: Healthy and Unhealthy, which were collected
from the village Dhakera, district Moradabad, state Uttar Pradesh, India.

Data Augmentation: The application of data augmentation over the dataset provides
additional variation. Augmentation included rotation, flipping, scaling, and colour adjustment,
which enhanced the dataset with a diverse set of images. Augmentation helps the model
generalize better and improves its performance on unseen data. The dataset contains a variety
of images from two classes, including disease-affected and healthy samples. Data
augmentation techniques create a dataset that consists of images with different geometric
transformations. Figure 1 shows a set of images from the image dataset after the application
of augmentation techniques.
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Figure 1. Various images from the sugarcane dataset after successful augmentation.

Image pre-processing: Image pre-processing refers to the operations performed on
images at the lowest level of processing. Using a smaller image size enables Deep Learning-
based models to train more efficiently with low computational cost. Furthermore, the size of
the collected raw images varies; most Deep Learning architectures require the images to have
uniform dimensions. Moreover, YOLQO’s performance degrades if the training images and the
testing images differ in dimensions. To ensure compatibility and optimal performance,
researchers resize the raw collected images to 416 x 416.

System Design: The system operates as illustrated in Figure 2. It accepts input images
either captured using the camera or selected from the device’s storage. The proposed system
then analyzes the input using the model to detect the presence of any disease. Subsequently, it
displays the results to the end user. Model development and its deployment in an application
require a high level of effectiveness in all phases. Hyperparameter tuning, a dataset for
training purposes, and high-end computational resources for analyzing high-resolution image
data are crucial for system development. The proposed system requires minimal
computational resources in dataset preparation. The proposed system directly identifies the
class of disease. A key advantage of the proposed system is that it does not require a backend
server for analysis.

https://jitm.ut.ac.ir/
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Figure 2. Architecture of the sugarcane disease identification system.
1. Model Evaluation and Testing:

The test set was kept separate to ensure that no image from the training phase entered the
evaluation. YOLOvV8n achieved the highest performance, while all YOLO models generally
performed well in aiding the diagnosis of sugarcane disease. The study employed various
performance parameters such as recall, precision, mAP, and loss. A relative assessment was
used to evaluate the performance of different models. Precision refers to the ability to identify
an object correctly. False Negative (FN) indicates that the model fails to detect the correct
disease class. In contrast, True Positive (TP) indicates that our model accurately predicts the
correct disease class. Equation (1) illustrates the formula used for calculating the accuracy.

TP
TP+FN (1)

Precision =

The model’s effectiveness depends on its ability to identify all target objects relevant to the
current analysis. Recall includes all bounding boxes identified by the model in the validation
dataset. When the model incorrectly predicted the presence of a class that was absent, then a
False Positive (FP) occurred. Equation (2) provides the equation for calculating recall.

TP

Recall = P (2)

mMAP is the mean Average Precision (AP) values computed across all classes. It accounts
for both FN and FP by summarizing the precision and recall trade-off, as expressed
mathematically in Equation (3), where N represents the number of classes. AP measures the
average precision across dissimilar recall levels with a value ranging from 0 to 1.

mAP =~ AP, 3)

https://jitm.ut.ac.ir/
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. Data Analysis

Almost 2,723 images were collected from a video of 3,000 seconds using the image framing
technique and then augmented. This growth highlights the significant effect of augmentation
strategies in diversifying the dataset. In the proposed study, horizontal and vertical flips were
used to double the dataset size. These augmentation techniques significantly improved the
diversity of samples, which is essential for training robust and generalized models. Moreover,
it contributed to alleviating underrepresented classes, thereby ensuring a more equitable
distribution across the dataset.

. Class Distribution

Healthy: The primary dataset comprises images of healthy sugarcane plants taken from
multiple angles and covering various plant parts. It was developed specifically for this study
from a 3,000-second video recording. To further assess model performance, an independent
secondary dataset was also used for evaluation.

Unhealthy: This class includes two types of sugarcane disease-affected images for model
development and testing.

Results

Figure 3 illustrates the training performance trends of the YOLOv8n compared to others. The
YOLOv8n model exhibited superior detection accuracy and robustness, with confidence
scores significantly higher than those of earlier models tested on unseen data.

Accuracy and Loss Curves (YOLO Models)
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Figure 3. Comparative analysis of different YOLO models through performance visualization.

To monitor the training process, Weights and Biases were integrated into the workflow.
This process enables real-time monitoring of model performance and training progress over
multiple epochs. The model parameters fluctuated significantly throughout the initial 0-5
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iterations. Performance improved progressively each time as the number of iterations
increased, and the precision ultimately reached 0.92. The YOLOv8n model’s effectiveness on
the sugarcane dataset was evaluated by using the loss function. The model not only classified
diseases into their correct categories but also supported detection, segmentation, and tracking
tasks. The loss function evaluates how well the models learn the mapping between input data
and expected output. A lower loss value indicates better performance, while a higher loss
suggests reduced accuracy. This study tracked validation segmentation loss for individual
objects as a component of the total training segmentation loss and recorded loss values at the
end of each training epoch. Table 2 presents the various classification metrics for different
versions of “YOLO”.

Table 2. Performance Analysis of different YOLO versions on the sugarcane dataset.

Model Name Precision value Recall value F1-Score Accuracy
“YOLOvV3-tiny” 0.81 0.82 0.81 0.82
“YOLOv4” 0.85 0.86 0.85 0.86
“YOLOV5s” 0.87 0.88 0.87 0.88
“YOLOvVT7s” 0.90 0.91 0.90 0.91
“YOLOv8n” 0.92 0.93 0.92 0.93

CNN-based Model: This study also evaluated the performance of an optimized CNN-based
model, which proved encouraging results. Figures 4a and 4b illustrate the CNN-based
model’s training accuracy and loss curves, highlighting its learning progress over time.

model accuracy model loss
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Figure 4(a),4(b). Accuracy and loss analysis of CNN based model

The same dataset was used for training purposes. The model achieved an accuracy of
approximately 98.0% as shown in Figure 4(a), and minimal loss was presented by Figure
4(b). A comprehensive summary of the optimized CNN-based model is presented in Figure 5.
The optimized CNN-based model consists of a total of ten layers, including three
convolutional layers, three max-pooling layers, one flattened layer, and two fully connected
(dense) layers.
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Figure 5. The optimized CNN-based model’s summary.

The performance evaluation of the proposed model revealed its excellent reliability in
classifying between the Healthy and Unhealthy classes. The model recorded an overall
accuracy value of 98% in the test set, showing a good generalization capacity for the entire
dataset. Table 3 illustrates the detailed classification metrics for the optimized CNN-based
model.

Table 3. Performance metrics for the proposed CNN-based model.

Class Precision Recall F1-score
Healthy 0.98 0.96 0.97
Unhealthy 0.98 1.00 0.99
Accuracy 0.98
Macro Avg 0.98 0.98 0.98
Weighted Avg 0.98 0.98 0.98

For the Healthy class, the model obtained a precision value of 0.98, a recall of 0.96, and an
F1-score of 0.97, indicating a very low rate of false positives and slightly higher but minimal
false negatives. For the Unhealthy class, the precision and recall were 0.98 and 1.00,
respectively, with an F1-score of 0.99, proving that almost all of the diseased samples were
identified correctly without any significant misclassification. A macro-average and weighted-
average score of 0.98 in precision, recall, and F1-score further guaranteed that the model
equally maintained its performance in both classes rather than favoring one over the other.
These results collectively emphasized the robustness and efficiency of the model that
delivered a high performance in the classification task.
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Figure 6. Confusion matrix for proposed CNN-based model.

Figure 6 shows a confusion matrix of the CNN-based proposed model. The consistency of
results from one class to another highlighted the robustness of the model in classifying
Healthy from Unhealthy samples. The close agreement of precision, recall, and F1-scores
further indicated that the model demonstrated a balanced performance in the sense that it
equally minimized false positives and false negatives.

Deployment and Application

Architecture: To enable real-time disease detection, segmentation, and tracking in sugarcane
crops, the most accurate trained model was embedded into a mobile application.
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Figure 7(a), 7(b),7(c). Mobile application interface of Sugarcane disease identification system

https://jitm.ut.ac.ir/
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Figure 7(a) illustrates the application launcher interface. Figure 7(b) provides two options:
selecting an image from the device’s storage or capturing it from the camera. Figure 7(c)
shows a grid of images for selection purposes.

Msss 0 @ @ oot |Tsus 0@ ® oon
TestDetector TestDetector

D

Press the predict
button

7(d) 7(e)
Figure 7(d), 7(e). Disease classification interface of Sugarcane disease identification system

Figure 7(d) displays the image chosen by the user, while Figure 7(e) indicates the
classification results, specifying whether the selected image is healthy or unhealthy.

The best-trained model was converted into a TensorFlow Lite (.tflite) setup using the
TensorFlow Lite Converter and deployed as an Android application. The mobile application
was built using the Java programming language and Android Studio IDE, which consists of
the Android SDK and Java Development Kit (JDK).

Sugarcane disease detection pseudocode: As the following pseudocode explains, the user
selects an image from device storage or directly through the device camera. The model then
analyzes the input image data and displays the classification results. After completion, the
system prompts the user to provide a new image, and the same procedure repeats. Figure 8
illustrates the pseudocode outlining the workflow of the proposed sugarcane disease
identification system.

https://jitm.ut.ac.ir/
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BEGIN
DISPLAY “Welcome to Plant Disease Identification App ™

PROMPT “Select Image Source: [1] Camera [2] Gallery™

INPUT source_choice
IF source_choice == 1 THEN
image «— CapturelmageFromCamera()
FELSE IF source_choice == 2 THEN
immage < SelectImageFromGallery()
ELSE
DISPLAY “Invalid choice. Restarting...”
GOTO BEGIN
END IF
result +— RunModel(image)
IF result IS NOT NULL THEN
IF result == "Healthy” THEN
DISPLAY “Plant is Healthy "/

ELSE IF vesult == "Unhealthy” THEN
DISPLAY “Plant is Unhealthy”
ELSE
DISPLAY “Unlnown result”
END IF
ELSE

DISPLAY Detection failed. Please try another image. ™
GOTO BEGIN

END IF

PROMPT “Do you want to test another image? [Y/NJ"

INPUT repeat_choice

IF repeat_choice == "Y" OR repeat_choice == "y" THEN
GOTO BEGIN

ELSE
DISPLAY “Thank you for using the app!”
EXIT

END IF

END

and flow of information.

Figure 8. Pseudocode of the sugarcane disease identification application.

Figure 9 illustrates the system flow diagram, which outlines the sequences of operations

https://jitm.ut.ac.ir/
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Figure 9. Flow chart for the implementation of the proposed model for mobile application
development.

Challenges and Observations

Annotating high-quality data proved to be both time-consuming and dependent on
professional expertise, as the accuracy of annotations directly influenced the performance of
the model. Variations in the quality of the image and different environmental conditions
posed challenges in ensuring uniform annotations and achieving stable training outcomes.
YOLOV8 demonstrated strong accuracy under agricultural conditions; extensive testing across
diverse environments remains essential to validate its robustness. Incorporating automated or
semi-automated annotation tools could significantly reduce the manual effort and accelerate
large-scale dataset processing. One key observation is that integrating real-time
environmental data has the potential to further increase prediction accuracy and support
farmers in making data-driven decisions.

Discussion

Dataset Quality and Diversity

Image Acquisition: In this study, a dataset of 2,723 original sugarcane images was used and
further expanded through data augmentation to enhance its quality and diversity. Images were
collected from several disease-prone areas across different growth stages and using various
cameras, thereby ensuring a comprehensive dataset. This approach yielded a dataset that
closely reflects real-world agricultural conditions.

Micro-Annotated Details: The inclusion of micro-annotations significantly improved the
dataset’s granularity by capturing fine facts of disease symptoms. The detailed labeling
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process aided the precise identification of suitable visual patterns, thereby refining the
model’s sensitivity and overall predictive accuracy.

Effectiveness of Data Augmentation

Augmentation Strategies: This study used data augmentation practices such as horizontal or
vertical flipping and brightness adjustment to increase dataset diversity. Augmentation was
especially valuable for the cases with insufficient class representation, including Yellow,
Yellow Rust, Red Leaf, and healthy pods. These techniques reduced overfitting, improved the
generalization performance of the Deep Learning models, and significantly increased the
volume of annotated data, thereby enhancing model performance.

Model Evaluation and Performance

Model Comparison: The study compared different YOLO models, with an optimized CNN-
based model outperforming others in both detection accuracy and inference speed,
highlighting its potential for real-time agricultural applications.

1.00 4

= Optimized CNN
1.0 4 YOLOv8
= YOLOV5

0.95

0.8
0.90 4

0.6 1

Loss

Accuracy

0.4

0.2 4
=~ Optimized CNN)
0704 YoLov8
= YOLOV5)

0.0 1
0 10 20 30 40 50 0 10 20 30 40 50
Epochs Epochs

10(a) 10(b)
Figure 10(a),10(b). Performance comparison: optimized CNN with others

Figure 10(a) illustrates the overall accuracy comparison, while Figure 10(b) presents loss
values obtained during the comparative analysis of different Yolo versions with the optimized
CNN model.

Table 4. Performance metrics table

Model Name Precision Recall F1-Score
Optimized CNN 0.98 0.97 0.98
YOLOvV8 0.95 0.94 0.95
YOLOvV5 0.91 0.89 0.90
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Table 4 illustrates the comparison results. The comparative evaluation showed that the
highest performance was achieved by the optimized CNN, with a precision of 0.98, a recall of
0.97, and an F1-score of 0.98. These results suggested that the optimized CNN outperformed
the YOLO family for sugarcane disease identification, making it a dependable option for real-
time sugarcane disease classification.

Resolution Analysis: Performance metrics varied across different annotated resolutions
(entire leaf vs. micro-annotation) and plant parts. The results showed significant advantages in
accurately detecting both complete and micro-annotations, demonstrating the model’s
suitability for real-time applications across diverse regions and conditions.

Challenges and Future Directions

The application of micro-annotation within a dataset proved challenging, as the quality and
consistency of annotations directly influenced model performance. Future work should
prioritize the development of computerized or semi-automated annotation tools to reduce
manual effort and improve efficiency. Additionally, integrating model predictions with real-
time environmental data could enhance detection accuracy and generate actionable insights
for farmers. Achieving fast application development with reliable results requires not only a
high-quality and diverse image set but also micro-level analysis to capture subtle disease
patterns. Future research directions may include the creation of larger and more diverse
datasets, the design and development of lightweight and efficient models, the adoption of a
multimodal approach, and the incorporation of explainable Al to ensure transparency and
trust in agricultural applications.

Conclusion

This study highlighted that Deep Learning models can significantly improve the accuracy of
real-time disease identification in sugarcane crops. The study achieved excellent results using
YOLO frameworks like YOLOV5 and YOLOVS, along with an optimized CNN model. The
CNN-based model outperformed some versions of YOLO. The collected field datasets
included diverse and high-quality images, which allowed for accurate disease classification,
achieving 98% accuracy in sugarcane disease identification. In addition to model
development, a mobile application was also created, which integrated the best-trained model
and provided an easy-to-use disease detection platform for farmers.

Through these findings, it was confirmed that the proposed system was both technically
sound and practically valuable, as actionable insights for effective disease management were
made available to farmers. The integration of Al-driven solutions marked a transformative
shift towards data-driven and sustainable agricultural practices. For future work, it was
suggested that datasets should be expanded to cover more diverse environmental conditions,
contextual information such as weather and soil factors should be incorporated, and
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lightweight models optimized for mobile and edge deployment should be developed. Such
advancements were expected to enhance scalability and usability, thereby amplifying the
system’s impact and supporting resilience and sustainability in agriculture.
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