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Abstract 

To minimize losses in the agricultural sector and ensure food security, early diagnosis and 

identification of sugarcane diseases are essential. Conventional diagnostic approaches are 

often costly, labor-intensive, and reliant on the subjective expertise of individuals in 

recognizing pathogenic microorganisms. Recent improvements in machine learning and deep 

learning provide viable solutions for automating the data analysis and classification of plant 

diseases through image-based analysis. This study presents a comprehensive analysis of 

image-based sugarcane disease identification systems, emphasizing various computational 

techniques to achieve optimal results, and applies these methods in a mobile application. In 

this study, the authors review relevant case studies, highlighting key developments in disease 

detection using computer vision technologies, and demonstrating how these approaches 

improve diagnostic accuracy while enhancing computational efficiency and reducing resource 

consumption. The authors aim to guide future research and development by offering methods 

to overcome existing challenges. This assessment serves as a resource for academics and 

practitioners, providing insights into current practices and suggesting ways to enhance 

automated plant disease detection systems for mobile and handheld devices. 
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Introduction 

The global population is projected to reach 9.8 billion by 2050. This growth poses a 

significant challenge for agriculture. The sector needs to boost food production to support a 

quickly growing and increasingly urban population. Climate change also poses a challenge by 

causing more unpredictability in farming conditions. Due to this, there is a need for new and 

sustainable solutions to enhance agricultural productivity and secure food for future 

generations.  

One promising method is precision agriculture, which leverages advanced technologies to 

optimize farming operations. Precision agriculture utilizes virtual analytics and next-

generation sensors to enhance crop yields by providing specific, actionable insights. 

Advanced sensing technologies have become imperative to this technique. Applications like 

weed detection, plant disease identification, and pest tracking have significantly benefited 

from these technologies. Conventionally, plant disease monitoring has relied on manual 

examination, which was labor-intensive and challenging to scale for large plantations. To 

overcome, researchers and practitioners have employed various techniques, including 

molecular biology, biotechnology, and manual diagnostic technologies. However, these 

methods often encompass high costs and complexity. 

The incorporation of Internet of Things (IoT) devices, sensors, drones, AI, and blockchain 

technology is bringing a significant transformation in agriculture. IoT devices and sensors 

continuously accumulate data on machinery performance, soil conditions, and environmental 

factors. Drones equipped with advanced cameras and multispectral sensors deliver specific 

information on crop health and potential. Blockchain technology works with transparency and 

traceability in the agricultural supply chain, assuring the authenticity and safety of food 

products. By minimizing resource waste, enabling real-time decision-making, and optimizing 

inputs according to particular requirements, the merging of artificial intelligence not only 

supports sustainability but also increases agricultural productivity. 

Machine learning and Deep Learning are at the forefront of this technological revolution. 

ML is a branch of AI that uses algorithms to classify patterns in the data and then improve the 

overall performance. Researchers have been using standard ML algorithms such as “Support 

Vector Machine (SVM)”, “K-nearest Neighbor (K-NN)”, and “Artificial Neural Network 

(ANN)” to detect plant diseases. However, these standard algorithms usually work with 

tabular data, not image-based information. 

Deep Learning, a more advanced subfield of AI, typically uses CNN architecture, which 

utilizes multiple layers of a neural network system to classify image data and recognize 
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patterns of interest. This approach has proven powerful in detecting plant diseases through the 

analysis of leaf images to classify disease signs and symptoms with high accuracy. Modern 

computer vision tools based on DL have extensively advanced the field of plant disease 

detection, providing automated and precise evaluation. Some practices, such as data 

augmentation and transfer learning, have also uplifted the capabilities of DL in this domain. 

Literature Review 

Image pre-processing is crucial for improving data quality and making images usable for 

model training. Researchers utilize numerous pre-processing techniques, including noise 

elimination, brightness adjustment, contrast leveling, and normalization. Pre-processing 

techniques used by Zhang et al. (2020) and Goyal et al. (2024) incorporated simple image 

enhancement techniques like blur reduction and geometric corrections, which significantly 

improved the performance of machine learning models by eliminating image artifacts and 

standardizing input data. Sachi et al. (2024) explored a higher level of pre-processing, which 

utilized methods like histogram equalization and adaptive thresholding to improve the 

readability of images. Kolli et al. (2024) enlightened that segmentation involves partitioning 

the image into meaningful regions to extract features related to plant diseases. Chakravarty et 

al. (2022) enlightened that the traditional methods use thresholding and field observations. In 

contrast, cutting-edge procedures use deep learning to identify patterns in a dataset. Chen et 

al. (2022) introduced an optimized version of YOLOv5 that classifies disease in the rubber 

tree. They used a dataset that contained images of rubber trees and achieved an accuracy of 

86.6%. Singh and Kumar (2023) explained the deep convolutional neural network 

advancements in cucumber leaf diseases, incorporating the ResNet50 architecture, which has 

shown high accuracy in segmenting plant images while keeping spatial data. 

Feature extraction involves identifying and quantifying different features or attributes from 

segmented images. Researchers have historically used hand-crafted features like texture, 

colour, and shape descriptors. Wang et al. (2021) emphasized the efficiency of deep learning 

models in automating feature extraction and directly accessing features from raw image data 

and proposed a method that combines conventional feature extraction with deep learning 

strategies to improve the accuracy. Sudhakar et al. (2024) discussed CNN- and SVM-based 

models that pre-process data to train ML models, typically employing supervised learning 

techniques for accurate brain tumor identification. Mohanty et al. (2016) explored a technique 

that incorporated a CNN-based model, which worked on smartphones and was successfully 

tested on various datasets, to leverage existing model knowledge through transfer learning. 

Kapida and Arul (2025) explained about the automated rice disease detection system, which 

recognized the disease at its early stages. Testing evaluates the model’s overall accuracy on 

unseen data, using metrics such as precision, accuracy, recall, and F1-score, emphasizing the 

need for strong testing protocols to ensure that models perform well on new and diverse 

datasets. 
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The development of ML models for plant disease detection is a multi-stage pipeline 

involving data acquisition, pre-processing, segmentation, and feature extraction, culminating 

in the training and testing phase. Recent improvements in Deep Learning and Machine 

Learning have drastically improved these steps, making it easier to detect disease in plants. 

Ongoing research continues to refine these methodologies, with a focal point on improving 

data quality, model robustness, and practical deployment in real-world agricultural areas. 

Methodology  

Data Collection: This step comprised preparing image data, which included the collection of 

images representing common diseases present in sugarcane plants. In this study, the sugarcane 

image dataset was divided into two classes. The first class contained healthy samples, and the 

second contained unhealthy samples. Table 1 presents the overall distribution. 

Table 1. Distribution of the sugarcane disease dataset for the healthy and unhealthy classes. 

S. No. Type of Disease Count of Images Distribution 

1 Healthy 1200 50 

2 Unhealthy Red root 845 25 

3 Unhealthy Red Rust 678 25 

4 Total 2723 100 

The dataset consisted of two major classes: Healthy and Unhealthy, which were collected 

from the village Dhakera, district Moradabad, state Uttar Pradesh, India. 

Data Augmentation: The application of data augmentation over the dataset provides 

additional variation. Augmentation included rotation, flipping, scaling, and colour adjustment, 

which enhanced the dataset with a diverse set of images. Augmentation helps the model 

generalize better and improves its performance on unseen data. The dataset contains a variety 

of images from two classes, including disease-affected and healthy samples. Data 

augmentation techniques create a dataset that consists of images with different geometric 

transformations. Figure 1 shows a set of images from the image dataset after the application 

of augmentation techniques. 
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Figure 1. Various images from the sugarcane dataset after successful augmentation. 

Image pre-processing: Image pre-processing refers to the operations performed on 

images at the lowest level of processing. Using a smaller image size enables Deep Learning-

based models to train more efficiently with low computational cost. Furthermore, the size of 

the collected raw images varies; most Deep Learning architectures require the images to have 

uniform dimensions. Moreover, YOLO’s performance degrades if the training images and the 

testing images differ in dimensions. To ensure compatibility and optimal performance, 

researchers resize the raw collected images to 416 × 416.  

System Design: The system operates as illustrated in Figure 2. It accepts input images 

either captured using the camera or selected from the device’s storage. The proposed system 

then analyzes the input using the model to detect the presence of any disease. Subsequently, it 

displays the results to the end user. Model development and its deployment in an application 

require a high level of effectiveness in all phases. Hyperparameter tuning, a dataset for 

training purposes, and high-end computational resources for analyzing high-resolution image 

data are crucial for system development. The proposed system requires minimal 

computational resources in dataset preparation. The proposed system directly identifies the 

class of disease. A key advantage of the proposed system is that it does not require a backend 

server for analysis.     
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Figure 2.  Architecture of the sugarcane disease identification system. 

1. Model Evaluation and Testing:  

The test set was kept separate to ensure that no image from the training phase entered the 

evaluation. YOLOv8n achieved the highest performance, while all YOLO models generally 

performed well in aiding the diagnosis of sugarcane disease. The study employed various 

performance parameters such as recall, precision, mAP, and loss. A relative assessment was 

used to evaluate the performance of different models. Precision refers to the ability to identify 

an object correctly. False Negative (FN) indicates that the model fails to detect the correct 

disease class. In contrast, True Positive (TP) indicates that our model accurately predicts the 

correct disease class. Equation (1) illustrates the formula used for calculating the accuracy. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                                                                  (1) 

The model’s effectiveness depends on its ability to identify all target objects relevant to the 

current analysis. Recall includes all bounding boxes identified by the model in the validation 

dataset. When the model incorrectly predicted the presence of a class that was absent, then a 

False Positive (FP) occurred. Equation (2) provides the equation for calculating recall. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                                                                       (2) 

mAP is the mean Average Precision (AP) values computed across all classes. It accounts 

for both FN and FP by summarizing the precision and recall trade-off, as expressed 

mathematically in Equation (3), where N represents the number of classes. AP measures the 

average precision across dissimilar recall levels with a value ranging from 0 to 1. 

𝑚𝐴𝑃 =
1

𝑁
∑ 𝐴𝑃𝑖
𝑁
𝑖=1                                                                                           (3) 
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2. Data Analysis 

Almost 2,723 images were collected from a video of 3,000 seconds using the image framing 

technique and then augmented. This growth highlights the significant effect of augmentation 

strategies in diversifying the dataset. In the proposed study, horizontal and vertical flips were 

used to double the dataset size. These augmentation techniques significantly improved the 

diversity of samples, which is essential for training robust and generalized models. Moreover, 

it contributed to alleviating underrepresented classes, thereby ensuring a more equitable 

distribution across the dataset. 

3. Class Distribution 

Healthy: The primary dataset comprises images of healthy sugarcane plants taken from 

multiple angles and covering various plant parts. It was developed specifically for this study 

from a 3,000-second video recording. To further assess model performance, an independent 

secondary dataset was also used for evaluation. 

Unhealthy: This class includes two types of sugarcane disease-affected images for model 

development and testing. 

Results 

Figure 3 illustrates the training performance trends of the YOLOv8n compared to others. The 

YOLOv8n model exhibited superior detection accuracy and robustness, with confidence 

scores significantly higher than those of earlier models tested on unseen data.   

 

Figure 3. Comparative analysis of different YOLO models through performance visualization. 

To monitor the training process, Weights and Biases were integrated into the workflow. 

This process enables real-time monitoring of model performance and training progress over 

multiple epochs. The model parameters fluctuated significantly throughout the initial 0-5 
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iterations. Performance improved progressively each time as the number of iterations 

increased, and the precision ultimately reached 0.92. The YOLOv8n model’s effectiveness on 

the sugarcane dataset was evaluated by using the loss function. The model not only classified 

diseases into their correct categories but also supported detection, segmentation, and tracking 

tasks. The loss function evaluates how well the models learn the mapping between input data 

and expected output. A lower loss value indicates better performance, while a higher loss 

suggests reduced accuracy. This study tracked validation segmentation loss for individual 

objects as a component of the total training segmentation loss and recorded loss values at the 

end of each training epoch. Table 2 presents the various classification metrics for different 

versions of “YOLO”.  

Table 2. Performance Analysis of different YOLO versions on the sugarcane dataset. 

Model Name Precision value Recall value F1-Score Accuracy 
“YOLOv3-tiny” 0.81 0.82 0.81 0.82 

“YOLOv4” 0.85 0.86 0.85 0.86 
“YOLOv5s” 0.87 0.88 0.87 0.88 
“YOLOv7s” 0.90 0.91 0.90 0.91 
“YOLOv8n” 0.92 0.93 0.92 0.93 

CNN-based Model: This study also evaluated the performance of an optimized CNN-based 

model, which proved encouraging results. Figures 4a and 4b illustrate the CNN-based 

model’s training accuracy and loss curves, highlighting its learning progress over time. 

 

Figure 4(a),4(b). Accuracy and loss analysis of CNN based model  

The same dataset was used for training purposes. The model achieved an accuracy of 

approximately 98.0% as shown in Figure 4(a), and minimal loss was presented by Figure 

4(b). A comprehensive summary of the optimized CNN-based model is presented in Figure 5. 

The optimized CNN-based model consists of a total of ten layers, including three 

convolutional layers, three max-pooling layers, one flattened layer, and two fully connected 

(dense) layers.  
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Figure 5. The optimized CNN-based model’s summary. 

The performance evaluation of the proposed model revealed its excellent reliability in 

classifying between the Healthy and Unhealthy classes. The model recorded an overall 

accuracy value of 98% in the test set, showing a good generalization capacity for the entire 

dataset. Table 3 illustrates the detailed classification metrics for the optimized CNN-based 

model.  

Table 3. Performance metrics for the proposed CNN-based model. 

Class Precision Recall F1-score 
Healthy 0.98 0.96 0.97 

Unhealthy 0.98 1.00 0.99 
Accuracy   0.98 

Macro Avg 0.98 0.98 0.98 
Weighted Avg 0.98 0.98 0.98 

For the Healthy class, the model obtained a precision value of 0.98, a recall of 0.96, and an 

F1-score of 0.97, indicating a very low rate of false positives and slightly higher but minimal 

false negatives. For the Unhealthy class, the precision and recall were 0.98 and 1.00, 

respectively, with an F1-score of 0.99, proving that almost all of the diseased samples were 

identified correctly without any significant misclassification. A macro-average and weighted-

average score of 0.98 in precision, recall, and F1-score further guaranteed that the model 

equally maintained its performance in both classes rather than favoring one over the other. 

These results collectively emphasized the robustness and efficiency of the model that 

delivered a high performance in the classification task. 
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Figure 6. Confusion matrix for proposed CNN-based model. 

Figure 6 shows a confusion matrix of the CNN-based proposed model. The consistency of 

results from one class to another highlighted the robustness of the model in classifying 

Healthy from Unhealthy samples. The close agreement of precision, recall, and F1-scores 

further indicated that the model demonstrated a balanced performance in the sense that it 

equally minimized false positives and false negatives. 

Deployment and Application 

Architecture: To enable real-time disease detection, segmentation, and tracking in sugarcane 

crops, the most accurate trained model was embedded into a mobile application.  

 

Figure 7(a), 7(b),7(c). Mobile application interface of Sugarcane disease identification system  
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Figure 7(a) illustrates the application launcher interface. Figure 7(b) provides two options: 

selecting an image from the device’s storage or capturing it from the camera. Figure 7(c) 

shows a grid of images for selection purposes.  

 

Figure 7(d), 7(e). Disease classification interface of Sugarcane disease identification system 

Figure 7(d) displays the image chosen by the user, while Figure 7(e) indicates the 

classification results, specifying whether the selected image is healthy or unhealthy.  

The best-trained model was converted into a TensorFlow Lite (.tflite) setup using the 

TensorFlow Lite Converter and deployed as an Android application. The mobile application 

was built using the Java programming language and Android Studio IDE, which consists of 

the Android SDK and Java Development Kit (JDK).  

Sugarcane disease detection pseudocode: As the following pseudocode explains, the user 

selects an image from device storage or directly through the device camera. The model then 

analyzes the input image data and displays the classification results. After completion, the 

system prompts the user to provide a new image, and the same procedure repeats. Figure 8 

illustrates the pseudocode outlining the workflow of the proposed sugarcane disease 

identification system. 
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Figure 8. Pseudocode of the sugarcane disease identification application. 

Figure 9 illustrates the system flow diagram, which outlines the sequences of operations 

and flow of information.   
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Figure 9. Flow chart for the implementation of the proposed model for mobile application 

development. 

Challenges and Observations 

Annotating high-quality data proved to be both time-consuming and dependent on 

professional expertise, as the accuracy of annotations directly influenced the performance of 

the model. Variations in the quality of the image and different environmental conditions 

posed challenges in ensuring uniform annotations and achieving stable training outcomes. 

YOLOv8 demonstrated strong accuracy under agricultural conditions; extensive testing across 

diverse environments remains essential to validate its robustness. Incorporating automated or 

semi-automated annotation tools could significantly reduce the manual effort and accelerate 

large-scale dataset processing. One key observation is that integrating real-time 

environmental data has the potential to further increase prediction accuracy and support 

farmers in making data-driven decisions. 

Discussion 

Dataset Quality and Diversity 

Image Acquisition: In this study, a dataset of 2,723 original sugarcane images was used and 

further expanded through data augmentation to enhance its quality and diversity. Images were 

collected from several disease-prone areas across different growth stages and using various 

cameras, thereby ensuring a comprehensive dataset. This approach yielded a dataset that 

closely reflects real-world agricultural conditions. 

Micro-Annotated Details: The inclusion of micro-annotations significantly improved the 

dataset’s granularity by capturing fine facts of disease symptoms. The detailed labeling 
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process aided the precise identification of suitable visual patterns, thereby refining the 

model’s sensitivity and overall predictive accuracy. 

Effectiveness of Data Augmentation 

Augmentation Strategies: This study used data augmentation practices such as horizontal or 

vertical flipping and brightness adjustment to increase dataset diversity. Augmentation was 

especially valuable for the cases with insufficient class representation, including Yellow, 

Yellow Rust, Red Leaf, and healthy pods. These techniques reduced overfitting, improved the 

generalization performance of the Deep Learning models, and significantly increased the 

volume of annotated data, thereby enhancing model performance. 

Model Evaluation and Performance 

Model Comparison:   The study compared different YOLO models, with an optimized  CNN-

based model outperforming others in both detection accuracy and inference speed, 

highlighting its potential for real-time agricultural applications.  

 

Figure 10(a),10(b). Performance comparison: optimized CNN with others 

Figure 10(a) illustrates the overall accuracy comparison, while Figure 10(b) presents loss 

values obtained during the comparative analysis of different Yolo versions with the optimized 

CNN model. 

Table 4. Performance metrics table 

Model Name Precision Recall F1-Score 

Optimized CNN 0.98 0.97 0.98 

YOLOv8 0.95 0.94 0.95 

YOLOv5 0.91 0.89 0.90 
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Table 4 illustrates the comparison results. The comparative evaluation showed that the 

highest performance was achieved by the optimized CNN, with a precision of 0.98, a recall of 

0.97, and an F1-score of 0.98. These results suggested that the optimized CNN outperformed 

the YOLO family for sugarcane disease identification, making it a dependable option for real-

time sugarcane disease classification. 

Resolution Analysis: Performance metrics varied across different annotated resolutions 

(entire leaf vs. micro-annotation) and plant parts. The results showed significant advantages in 

accurately detecting both complete and micro-annotations, demonstrating the model’s 

suitability for real-time applications across diverse regions and conditions.  

Challenges and Future Directions 

The application of micro-annotation within a dataset proved challenging, as the quality and 

consistency of annotations directly influenced model performance. Future work should 

prioritize the development of computerized or semi-automated annotation tools to reduce 

manual effort and improve efficiency. Additionally, integrating model predictions with real-

time environmental data could enhance detection accuracy and generate actionable insights 

for farmers. Achieving fast application development with reliable results requires not only a 

high-quality and diverse image set but also micro-level analysis to capture subtle disease 

patterns. Future research directions may include the creation of larger and more diverse 

datasets, the design and development of lightweight and efficient models, the adoption of a 

multimodal approach, and the incorporation of explainable AI to ensure transparency and 

trust in agricultural applications. 

Conclusion 

This study highlighted that Deep Learning models can significantly improve the accuracy of 

real-time disease identification in sugarcane crops. The study achieved excellent results using 

YOLO frameworks like YOLOv5 and YOLOv8, along with an optimized CNN model. The 

CNN-based model outperformed some versions of YOLO. The collected field datasets 

included diverse and high-quality images, which allowed for accurate disease classification, 

achieving 98% accuracy in sugarcane disease identification. In addition to model 

development, a mobile application was also created, which integrated the best-trained model 

and provided an easy-to-use disease detection platform for farmers.  

Through these findings, it was confirmed that the proposed system was both technically 

sound and practically valuable, as actionable insights for effective disease management were 

made available to farmers. The integration of AI-driven solutions marked a transformative 

shift towards data-driven and sustainable agricultural practices. For future work, it was 

suggested that datasets should be expanded to cover more diverse environmental conditions, 

contextual information such as weather and soil factors should be incorporated, and 
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lightweight models optimized for mobile and edge deployment should be developed. Such 

advancements were expected to enhance scalability and usability, thereby amplifying the 

system’s impact and supporting resilience and sustainability in agriculture. 
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