Document Type : Research Paper
Authors
1 Ph.D. Candidate, Department of Marketing, Kish International Campus, University of Tehran, Kish, Iran.
2 Associate Prof., Department of Marketing, Faculty of Business Management, College of Management, University of Tehran, Tehran, Iran.
Abstract
Keywords
Main Subjects
Abhishek, V., Fader, P., & Hosanagar, K. (2012). The Long Road to Online Conversion: A model of Multi-Channel Attribution. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.2158421
Anderl, E., Becker, I., Von Wangenheim, F., & Schumann, J. H. (2016a). Mapping the customer journey: Lessons learned from graph-based online attribution modeling. International Journal of Research in Marketing, 33(3), 457–474. https://doi.org/10.1016/j.ijresmar.2016.03.001
Anderl, E., Schumann, J. H., & Kunz, W. (2016b). Helping Firms reduce complexity in multichannel online data: A new Taxonomy-Based Approach for Customer Journeys. Journal of Retailing, 92(2), 185–203. https://doi.org/10.1016/j.jretai.2015.10.001
Batra, R., & Keller, K. L. (2016). Integrating Marketing Communications: New findings, new lessons, and new ideas. Journal of Marketing, 80(6), 122–145. https://doi.org/10.1509/jm.15.0419
Baxendale, S., Macdonald, E. K., & Wilson, H. N. (2015). The impact of different touchpoints on brand consideration. Journal of Retailing, 91(2), 235–253. https://doi.org/10.1016/j.jretai.2014.12.008
Becker, I. F., Linzmajer, M., & Von Wangenheim, F. (2017). Cross-Industrial user channel preferences on the path to online purchase: homogeneous, heterogeneous, or mixed? Journal of Advertising, 46(2), 248–268. https://doi.org/10.1080/00913367.2017.1300076
Becker, L., & Rech, E. (2024). Sensorial customer experiences in online touchpoints. In Emerald Publishing Limited eBooks (pp. 19–37). https://doi.org/10.1108/978-1-83753-686-320241002
Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology, 3(2), 77–101. https://doi.org/10.1191/1478088706qp063oa
Cai, H., Ren, K., Zhang, W., Malialis, K., Wang, J., Yu, Y., & Guo, D. (2017). Real-Time Bidding by Reinforcement Learning in Display Advertising. Proceedings of the Tenth ACM International Conference on Web Search and Data Mining. https://doi.org/10.1145/3018661.3018702
Cambra-Fierro, J., Melero-Polo, I., Sese, F. J., & Van Doorn, J. (2017). Customer-Firm interactions and the path to profitability. Journal of Service Research, 21(2), 201–218. https://doi.org/10.1177/1094670517738369
Commerce, S. (2025, January 11). 51 ECommerce Statistics in 2025 (Global and U.S. data) - SellersCommerce. SellersCommerce. https://www.sellerscommerce.com/blog/ecommerce-statistics/
De Haan, E., Wiesel, T., & Pauwels, K. (2016). The effectiveness of different forms of online advertising for purchase conversion in a multiple-channel attribution framework. International Journal of Research in Marketing, 33(3), 491–507. https://doi.org/10.1016/j.ijresmar.2015.12.001
De Keyser, A., Verleye, K., Lemon, K. N., Keiningham, T. L., & Klaus, P. (2020). Moving the customer experience field forward: introducing the Touchpoints, Context, Qualities (TCQ) nomenclature. Journal of Service Research, 23(4), 433–455. https://doi.org/10.1177/1094670520928390
Dinner, I. M., Heerde Van, H. J., & Neslin, S. A. (2014). Driving Online and Offline Sales: The Cross-Channel Effects of Traditional, Online Display, and Paid Search Advertising. Journal of Marketing Research, 51(5), 527-545. https://doi.org/10.1509/jmr.11.0466
Fernández, L. (2020). Applications of Multi-Touch Attribution Modelling [Marster’s Thesis, Univesidad Torcuato di Tella], Buenos Aires.
Flick, U. (2018). Doing grounded theory. SAGE Publications Ltd.
Gao, Y., & Qiao, M. (2025). Reach measurement, optimization and frequency capping in targeted online advertising under K-Anonymity. arXiv.org. https://arxiv.org/abs/2501.04882
Gentile, C., Spiller, N., & Noci, G. (2007). How to sustain the customer experience: European Management Journal, 25(5), 395–410. https://doi.org/10.1016/j.emj.2007.08.005
Gupta, S., Leszkiewicz, A., Kumar, V., Bijmolt, T., & Potapov, D. (2020). Digital Analytics: modeling for insights and new methods. Journal of Interactive Marketing, 51(1), 26–43. https://doi.org/10.1016/j.intmar.2020.04.003
Hallikainen, H., Alamäki, A., & Laukkanen, T. (2018). Individual preferences of digital touchpoints: A latent class analysis. Journal of Retailing and Consumer Services, 50, 386–393. https://doi.org/10.1016/j.jretconser.2018.07.014
Hu, L., & Olivieri, M. (2020). Social media management in the traveller’s customer journey: an analysis of the hospitality sector. Current Issues in Tourism, 24(12), 1768–1779. https://doi.org/10.1080/13683500.2020.1819969
Johnson, P. and Clark, M. (2006) ‘Editors’ introduction: Mapping the terrain: An overview of business and management research methodologies’, in P. Johnson and M. Clark (eds) Business and Management Research Methodologies. London: Sage, pp. xxv–lv.
Kaur, S., & Gupta, S. K. (2020). A fuzzy-based framework for evaluation of website design quality index. International Journal on Digital Libraries, 22(1), 15–47. https://doi.org/10.1007/s00799-020-00292-6
Kincl, T., & Štrach, P. (2010). Measuring website quality: asymmetric effect of user satisfaction. Behaviour and Information Technology, 31(7), 647–657. https://doi.org/10.1080/0144929x.2010.526150
King, N., Brooks, J., & Horrocks, C. (2018). Interviews in qualitative research. King, Nigel - Brooks, Joanna - Horrocks, Christine - SAGE Publications Ltd - Torrossa. https://www.torrossa.com/en/resources/an/5019272
Klapdor, S., Anderl, E., Schumann, J. H., & Wangenheim, F. V. (2015). How to Use Multichannel Behavior to Predict online Conversions: Behavior Patterns across online Channels inform strategies for Turning Users into Paying Customers. Journal of Advertising Research, 55(4), 433–442. https://doi.org/10.2501/JAR-2015-024
Kranzbühler, A., Kleijnen, M. H. P., & Verlegh, P. W. J. (2018). Outsourcing the pain, keeping the pleasure: effects of outsourced touchpoints in the customer journey. Journal of the Academy of Marketing Science, 47(2), 308–327. https://doi.org/10.1007/s11747-018-0594-5
Kuehnl, C., Jozic, D., & Homburg, C. (2019). Effective customer journey design: consumers’ conception, measurement, and consequences. Journal of the Academy of Marketing Science, 47(3), 551–568. https://doi.org/10.1007/s11747-018-00625-7
Leguina, J. R., Rumin, Á. C., & Rumin, R. C. (2021). Optimizing the Frequency Capping: A robust and reliable methodology to define the number of ads to maximize ROAS. Applied Sciences, 11(15), 6688. https://doi.org/10.3390/app11156688
Lemon, K. N., & Verhoef, P. C. (2016). Understanding customer experience throughout the customer journey. Journal of Marketing, 80(6), 69–96. https://doi.org/10.1509/jm.15.0420
Li, H., & Kannan, P. (2014). Attributing conversions in a multichannel online marketing environment: an empirical model and a field experiment. Journal of Marketing Research, 51(1), 40–56. https://doi.org/10.1509/jmr.13.0050
Li, H., Kannan, P. K., Viswanathan, S., & Pani, A. (2016). Attribution strategies and return on keyword investment in paid search advertising. Marketing Science, 35(6), 831–848. https://doi.org/10.1287/mksc.2016.0987
Machado, M. R., & Karray, S. (2022). Applying hybrid machine learning algorithms to assess customer risk-adjusted revenue in the financial industry. Electronic Commerce Research and Applications, 56, 101202. https://doi.org/10.1016/j.elerap.2022.101202
Madhavi, C., & Frow, P. (2017). Customer experience and journey: emerging aspects. International Journal of Managerial Studies and Research, 5(10). https://doi.org/10.20431/2349-0349.0510003
Manchanda, P., Dubé, J., Goh, K. Y., & Chintagunta, P. K. (2006). The effect of banner advertising on internet purchasing. Journal of Marketing Research, 43(1), 98–108. https://doi.org/10.1509/jmkr.43.1.98
Matoulek, M. (2018). Data analytical way to identify an appropriate attribution model for digital marketing. Master’s thesis, Ceské vysoké ucení technické v Praze. Vypoˇ cetní a informacní centrum.
Maxwell, J. A. & Miller, B. A. (2008). Categorizing and connecting strategies in qualitative data analysis. In S. N. Hesse-Biber & P. Leavy (Eds.), Handbook of emergent methods (pp. 461–477). Guilford Press.
Miralles-Pechuán, L., Ponce, H., & Martínez-Villaseñor, L. (2020). A 2020 perspective on “A novel methodology for optimizing display advertising campaigns using genetic algorithms.” Electronic Commerce Research and Applications, 40, 100953. https://doi.org/10.1016/j.elerap.2020.100953
Mrad, A. B., & Hnich, B. (2024). Intelligent attribution modeling for enhanced digital marketing performance. Intelligent Systems With Applications, 21, 200337. https://doi.org/10.1016/j.iswa.2024.200337
Neslin, S. A., Grewal, D., Leghorn, R., Shankar, V., Teerling, M. L., Thomas, J. S., & Verhoef, P. C. (2006). Challenges and opportunities in multichannel customer management. Journal of Service Research, 9(2), 95–112. https://doi.org/10.1177/1094670506293559
Pantano, E., & Gandini, A. (2017). Exploring the forms of sociality mediated by innovative technologies in retail settings. Computers in Human Behavior, 77, 367–373. https://doi.org/10.1016/j.chb.2017.02.036
Pattanayak, S., Pati, P. B., & Singh, T. (2022). Performance analysis of machine learning algorithms on Multi-Touch Attribution Model. 2022 3rd International Conference for Emerging Technology (INCET), 1–7. https://doi.org/10.1109/incet54531.2022.9824865
Ren, K., Fang, Y., Zhang, W., Liu, S., Li, J., Zhang, Y., Yu, Y., & Wang, J. (2018). Learning Multi-touch Conversion Attribution with Dual-attention Mechanisms for Online Advertising. Proceedings of the 27th ACM International Conference on Information and Knowledge Management - CIKM ’18. https://doi.org/10.1145/3269206.3271677
Rosenbaum, M. S., Otalora, M. L., & Ramírez, G. C. (2017). How to create a realistic customer journey map. Business Horizons, 60(1), 143–150. https://doi.org/10.1016/j.bushor.2016.09.010
Samuel van Tol, D. (2024). Evaluating the feasibility of supervised machine learning models for multi-touch attribution [Marster’s Thesis, Erasmus University Rotterdam], Netherlands.
Sands, S., Ferraro, C., Campbell, C., & Pallant, J. (2016). Segmenting multichannel consumers across search, purchase and after-sales. Journal of Retailing and Consumer Services, 33, 62–71. https://doi.org/10.1016/j.jretconser.2016.08.001
Santos, S., & Gonçalves, H. M. (2021). Touchpoints and Channels: Classifications, characteristics, and issues for future research. In Smart innovation, systems and technologies (pp. 311–323). https://doi.org/10.1007/978-981-33-4183-8_25
Saunders, M. N. K., Lewis, P., & Thornhill, A. (2016). Research methods for business students (7th ed.). Pearson Education.
Schmidt, S., & Eisend, M. (2015). Advertising Repetition: A Meta-Analysis on Effective Frequency in Advertising. Journal of Advertising, 44(4), 415–428. https://doi.org/10.1080/00913367.2015.1018460
Schweidel, D. A., Bart, Y., Inman, J. J., Stephen, A. T., Libai, B., Andrews, M., Rosario, A. B., Chae, I., Chen, Z., Kupor, D., Longoni, C., & Thomaz, F. (2022). How consumer digital signals are reshaping the customer journey. Journal of the Academy of Marketing Science, 50(6), 1257–1276. https://doi.org/10.1007/s11747-022-00839-w
Shang, J. (2023). The different types of Multi-Touch Attribution modeling [INFOGRAPHIC]. AdRoll. https://www.adroll.com/blog/the-different-types-of-multi-touch-attribution-modeling
Shankar, V., Inman, J. J., Mantrala, M., Kelley, E., & Rizley, R. (2011). Innovations in Shopper Marketing: current insights and future research issues. Journal of Retailing, 87, S29–S42. https://doi.org/10.1016/j.jretai.2011.04.007
Shao, X., & Li, L. (2011). Data-driven multi-touch attribution models. Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining - KDD ’11. https://doi.org/10.1145/2020408.2020453
Shaw, C., & Ivens, J. (2002). Building great customer experiences. In Palgrave Macmillan UK eBooks. https://doi.org/10.1057/9780230554719
Straker, K., Wrigley, C., & Rosemann, M. (2015). Typologies and touchpoints: designing multi-channel digital strategies. Journal of Research in Interactive Marketing, 9(2), 110–128. https://doi.org/10.1108/jrim-06-2014-0039
Swinscoe A (2020) Attention marketers and customer experience leaders: Here is how the coronavirus pandemic is changing customer behaviour. In: Cust. Think. https://customerthink. com/attention-marketers-and-customer-experience-leaders-here-is-how-the-coronavirus-pan demic-is-changing-customer-behaviour/. Accessed 09 Sep 2024
Tueanrat, Y., Papagiannidis, S., & Alamanos, E. (2021). Going on a journey: A review of the customer journey literature. Journal of Business Research, 125, 336–353. https://doi.org/10.1016/j.jbusres.2020.12.028
Van Nguyen, A. T., McClelland, R., & Thuan, N. H. (2022). Exploring customer experience during channel switching in omnichannel retailing context: A qualitative assessment. Journal of Retailing and Consumer Services, 64, 102803. https://doi.org/10.1016/j.jretconser.2021.102803
Verhoef, P. C., Kannan, P., & Inman, J. J. (2015). From Multi-Channel retailing to Omni-Channel retailing. Journal of Retailing, 91(2), 174–181. https://doi.org/10.1016/j.jretai.2015.02.005
Wagner, G., Schramm-Klein, H., & Steinmann, S. (2018). Online retailing across e-channels and e-channel touchpoints: Empirical studies of consumer behavior in the multichannel e-commerce environment. Journal of Business Research, 107, 256–270. https://doi.org/10.1016/j.jbusres.2018.10.048
Xu, L., Duan, J. A., & Whinston, A. (2014). Path to Purchase: a mutually exciting point process model for online advertising and conversion. Management Science, 60(6), 1392–1412. https://doi.org/10.1287/mnsc.2014.1952
Yang, D., Dyer, K., & Wang, S. (2020). Interpretable Deep learning model for online multi-touch attribution. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2004.00384
Zhang, Y., Wei, Y., & Ren, J. (2014). Multi-touch Attribution in Online Advertising with Survival Theory. 2014 IEEE International Conference on Data Mining. https://doi.org/10.1109/icdm.2014.130