Alaka, H. A., Oyedele, L. O., Owolabi, H. A., Kumar, V., Ajayi, S. O., Akinade, O. O., & Bilal, M. (2018). Systematic review of bankruptcy prediction models: Towards a framework for tool selection. Expert Systems with Applications, 94, 164-184.
Ali, S., Yue, T., & Abreu, R. (2022). When software engineering meets quantum computing. Communications of the ACM, 65(4), 84-88.
Amato, A., Guzzo, T., Loia, V., Moscato, V., & Picariello, A. (2023). Deep learning models for financial distress prediction: A survey. Neural Computing and Applications. Advanced online publication.
Anton, N., Doroftei, B., Curteanu, S., Catãlin, L., Ilie, O. D., Târcoveanu, F., & Bogdănici, C. M. (2022). A comprehensive review on the use of artificial intelligence in ophthalmology and future research directions. Diagnostics, 13(1), 100.
Bouland, A., van Dam, W., Joorati, H., Kerenidis, I., & Prakash, A. (2020). Prospects and challenges of quantum finance. arXiv preprint arXiv:2011.06492.
Chang, Y. J., Sie, M. F., Liao, S. W., & Chang, C. R. (2023). The prospects of quantum computing for quantitative finance and beyond. IEEE Nanotechnology Magazine.
Chen, C., Hu, Z., Liu, S., & Tseng, H. (2012). Emerging trends in regenerative medicine: A scientometric analysis in CiteSpace. Expert Opinion on Biological Therapy, 12(5), 593–608.
Chen, C. M., Tso, G. K. F., & He, K. (2024). Quantum Optimized Cost Based Feature Selection and Credit Scoring for Mobile Micro-financing. Computational Economics, 63(2), 919-950.
Eichler, H. G., Trusheim, M., Schwarzer‐Daum, B., Larholt, K., Zeitlinger, M., Brunninger, M., ... & Hirsch, G. (2022). Precision Reimbursement for Precision Medicine: Using Real‐World Evidence to Evolve From Trial‐and‐Project to Track‐and‐Pay to Learn‐and‐Predict. Clinical Pharmacology & Therapeutics, 111(1), 52-62.
ensen, R. I. T., & Iosifidis, A. (2023). Fighting Money Laundering With Statistics and Machine Learning.
Gao, B. (2022). The use of machine learning combined with data mining technology in financial risk prevention. Computational economics, 59(4), 1385-1405.
Gao, Y., Wang, Q., Xu, C., & Wang, J. (2023). Financial distress prediction based on an ensemble of deep learning and incremental learning. Symmetry, 14(9), 716.
Gómez, A., Leitao, Á., Manzano, A., Musso, D., Nogueiras, M. R., Ordóñez, G., & Vázquez, C. (2022). A survey on quantum computational finance for derivatives pricing and VaR. Archives of computational methods in engineering, 29(6), 4137-4163.
Gupta, S., Modgil, S., Bhatt, P. C., Jabbour, C. J. C., & Kamble, S. (2023). Quantum computing led innovation for achieving a more sustainable COVID-19 healthcare industry. Technovation, 120, 102544.
Hall, P., Cox, B., Dickerson, S., Ravi Kannan, A., Kulkarni, R., & Schmidt, N. (2021). A United States fair lending perspective on machine learning. Frontiers in Artificial Intelligence, 4, 695301.
Hicks, D., Wouters, P., Waltman, L., De Rijcke, S., & Rafols, I. (2015). Bibliometrics: the Leiden Manifesto for research metrics. Nature, 520(7548), 429-431.
Ibrahim, A., Thiruvady, D., Schneider, J. G., & Abdelrazek, M. (2020). The challenges of leveraging threat intelligence to stop data breaches. Frontiers in Computer Science, 2, 36.
Innan, N., Khan, M. A. Z., & Bennai, M. (2024). Quantum computing for electronic structure analysis: Ground state energy and molecular properties calculations. Materials Today Communications, 38, 107760.
Innan, N., Sawaika, A., Dhor, A., Dutta, S., Thota, S., Gokal, H., ... & Bennai, M. (2024). Financial fraud detection using quantum graph neural networks. Quantum Machine Intelligence, 6(1), 1-18.
Kar, Arpan Kumar, et al. "How could quantum computing shape information systems research–An editorial perspective and future research directions." International Journal of Information Management (2024): 102776.
Kute, D. V., Pradhan, B., Shukla, N., & Alamri, A. (2021). Deep learning and explainable artificial intelligence techniques applied for detecting money laundering–a critical review. IEEE Access, 9, 82300-82317.
Li, J., Li, Z., Ma, Y., Dong, Y., & Chen, C. (2023). Deep Learning with Latent Features for Financial Distress Prediction. IEEE Access. Advanced online publication.
Li, W., Paraschiv, F., & Sermpinis, G. (2022). A data-driven explainable case-based reasoning approach for financial risk detection. Quantitative Finance, 22(12), 2257-2274.
Lin, K., & Gao, Y. (2022). Model interpretability of financial fraud detection by group SHAP. Expert Systems with Applications, 210, 118354.
Medeiros Assef, F., & Arns Steiner, M. T. (2020). Ten-year evolution on credit risk research: a Systematic Literature Review approach and discussion. Ingeniería e investigación, 40(2), 50-71.
Moradi, S., Mohammadi, S. D., Aghajani Bazzazi, A., Aali Anvari, A., & Osmanpour, A. (2022). Financial Risk Management Prediction of Mining and Industrial Projects using a Combination of Artificial Intelligence and Simulation Methods. Journal of Mining and Environment, 13(4), 1211-1223.
Pandl, K. D., Thiebes, S., Schmidt-Kraepelin, M., & Sunyaev, A. (2020). On the convergence of artificial intelligence and distributed ledger technology: A scoping review and future research agenda. IEEE Access, 8, 57075-57095.
Pol, S., & Ambekar, S. S. (2022). Predicting credit ratings using deep learning models–an analysis of the Indian it industry. Australasian Accounting, Business and Finance Journal, 16(5), 38-51.
Radanliev, P. (2024). Artificial intelligence and quantum cryptography. Journal of Analytical Science and Technology, 15(1), 4.
Saini, R., Bera, A., Behera, B. K., Ahmed, E. A., Jamjoom, M., & Farouk, A. (2023). Designing quantum blockchain system integrated with 6G network. Journal of King Saud University-Computer and Information Sciences, 35(10), 101847.
Sun, Q., Wu, H., & Zhao, B. (2022). Artificial intelligence technology in internet financial edge computing and analysis of security risk. International Journal of Ad Hoc and Ubiquitous Computing, 39(4), 201-210.
Takeda, A., Fujiwara, S., & Kanamori, T. (2014). Extended robust support vector machine based on financial risk minimization. Neural Computation, 26(11), 2541-2569.
Vaiyapuri,T., K. Priyadarshini, A. Hemlathadhevi, M. Dhamodaran, Dutta, A., Pustokhina, I.V., Pustokhin, D., 2022., Intelligent Feature Selection with Deep Learning Based Financial Risk Assessment Model,
Computers, Materials \& Continua, 72 (2), 2429—2444, retrieved from
http://www.techscience.com/cmc/v72n2/47226
Wang, B. (2022). A financial risk identification model based on artificial intelligence. Wireless Networks, 1-9.
Wang, L., & Lee, R. S. (2022, November). The Design and Implementation of Quantum Finance Software Development Kit (QFSDK) for AI Education. In 2022 20th International Conference on Information Technology Based Higher Education and Training (ITHET) (pp. 1-7). IEEE.
Wei, L., Liu, H., Xu, J., Shi, L., Shan, Z., Zhao, B., & Gao, Y. (2023). Quantum machine learning in medical image analysis: A survey. Neurocomputing, 525, 42-53.
Yang, M., Lim, M. K., Qu, Y., Ni, D., & Xiao, Z. (2023). Supply chain risk management with machine learning technology: A literature review and future research directions. Computers & Industrial Engineering, 175, 108859.
Yu, L., Härdle, W. K., Borke, L., & Benschop, T. (2023). An AI approach to measuring financial risk. The Singapore Economic Review, 68(05), 1529-1549.
Zhang, L., Alsubai, S., Alqahtani, A., Alanazi, A., & Abualigah, L. Leveraging quantum‐inspired chimp optimization and deep neural networks for enhanced profit forecasting in financial accounting systems. Expert Systems, e13563.
Zhang, R., Wang, J., Jiang, N., & Wang, Z. (2023). Quantum support vector machine without iteration. Information Sciences, 635, 25-41.
Zhang, T., Zhu, W., Guo, Z., Li, S., & Li, Z. (2023). Incremental Support Vector Machine Ensemble Method for Financial Distress Prediction. Journal of Electrical and Computer Engineering, 2023, 8865823.
Zhang, Y., Luo, M., Wu, P., Wu, S., Lee, T. Y., & Bai, C. (2022). Application of computational biology and artificial intelligence in drug design. International journal of molecular sciences, 23(21), 13568.
Zhang, Y., Wu, Q., Li, H., Guo, J., Zhang, Y., & Xu, Y. (2023). Incremental Gradient Boosting Decision Trees Algorithm with Class Balancing for Financial Distress Prediction. IEEE Access. Advanced online publication.
Zhu, W., Zhang, T., Wu, Y., Li, S., & Li, Z. (2022). Research on optimization of an enterprise financial risk early warning method based on the DS-RF model. International review of financial analysis, 81, 102140.