Assessing the performance of Co-Saliency Detection method using various Deep Neural Networks

Document Type : Research Paper


Department of Computer Engineering & Applications, GLA University, Mathura.



Co-Saliency object detection is the process of identifying common and repetitive objects from the group of images. Earlier studies have looked over several state-of-art deep neural network methodologies for co-saliency detection approach. The Deep CNN approaches rely heavily on co-saliency detection due to their potent feature extraction capabilities both deep and wide. This article assess the performance of several state-of-art deep learning model (VGG19, Inceptionv3, modifiedResNet, MobileNetV2 and PoolNet) for the purpose of co-saliency detection among images from benchmark datasets. All the models were trained on   70% part of the dataset and remaining were used for testing purpose. Experimental results show that modified ResNetmodel outperforms getting 96.53% accuracy as compared to other state-of-the-art deep neural network models.


Sun, M., Zhou, Z., Hu, Q., Wang, Z., & Jiang, J. (2018). SG-FCN: A motion and memory-based deep learning model for video saliency detection. IEEE transactions on cybernetics, 49(8), 2900-2911.
Zhang, L., Yang, C., Lu, H., Ruan, X., & Yang, M. H. (2016).Ranking saliency. IEEE transactions on pattern analysis and machine intelligence, 39(9), 1892-1904.
Yang, X., Li, S., Ma, J., Yang, J. Y., & Yan, J. (2022). Co-saliency-regularized correlation filters for object tracking. Signal Processing: Image Communication, 103, 116655.
Bai, C., Chen, J. N., Huang, L., Kpalma, K., & Chen, S. (2018). Saliency-based multi-feature modeling for semantic image retrieval. Journal of Visual Communication and Image Representation, 50, 199-204.
Zhang, D., Meng, D., & Han, J. (2016).Co-saliency detection via a self-paced multiple-instance learning framework. IEEE transactions on pattern analysis and machine intelligence, 39(5), 865-878.
Zhang, D., Fu, H., Han, J., Borji, A., & Li, X. (2018). A review of co-saliency detection algorithms: fundamentals, applications, and challenges. ACM Transactions on Intelligent Systems and Technology (TIST), 9(4), 1-31.
Wang, Q., Zhang, L., Li, Y., &Kpalma, K. (2020).Overview of deep-learning based methods for salient object detection in videos. Pattern Recognition, 104, 107340.
Jeong, D. J., Hwang, I., & Cho, N. I. (2018). Co-salient object detection based on deep saliency networks and seed propagation over an integrated graph. IEEE Transactions on Image Processing, 27(12), 5866-5879.
Fan, D. P., Lin, Z., Ji, G. P., Zhang, D., Fu, H., & Cheng, M. M. (2020).Taking a deeper look at co-salient object detection.In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 2919-2929).
Fu, H., Cao, X., &Tu, Z. (2013).Cluster-based co-saliency detection. IEEE Transactions on Image Processing, 22(10), 3766-3778.
Song, H., Liu, Z., Du, H., Sun, G., Le Meur, O., &Ren, T. (2017).Depth-aware salient object detection and segmentation via multiscale discriminative saliency fusion and bootstrap learning. IEEE Transactions on Image Processing, 26(9), 4204-4216.
Ullah, I., Jian, M., Hussain, S., Guo, J., Yu, H., Wang, X., & Yin, Y. (2020).A brief survey of visual saliency detection. Multimedia Tools and Applications, 79(45), 34605-34645.
Han, J., Cheng, G., Li, Z., & Zhang, D. (2017).A unified metric learning-based framework for co-saliency detection. IEEE Transactions on Circuits and Systems for Video Technology, 28(10), 2473-2483.
He, K., Zhang, X., Ren, S., & Sun, J. (2016).Deep residual learning for image recognition.In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778).
Han, J., Quan, R., Zhang, D., &Nie, F. (2017).Robust object co-segmentation using background prior. IEEE Transactions on Image Processing, 27(4), 1639-1651.
Ren, J., Liu, Z., Zhou, X., Sun, G., &Bai, C. (2018).Saliency integration driven by similar images. Journal of Visual Communication and Image Representation, 50, 227-236.
Li, L., Liu, Z., & Zhang, J. (2018). Unsupervised image co-segmentation via guidance of simple images. Neurocomputing, 275, 1650-1661.
Wei, L., Zhao, S., Bourahla, O. E. F., Li, X., & Wu, F. (2017).Group-wise deep co-saliency detection. arXiv preprint arXiv:1707.07381.
Ye, L., Liu, Z., Li, L., Shen, L., Bai, C., & Wang, Y. (2017).Salient object segmentation via effective integration of saliency and objectness. IEEE Transactions on Multimedia, 19(8), 1742-1756.
Gupta, A. K., Seal, A., Prasad, M., Khanna, P. (2020). Salient object detection techniques in computer vision—a survey. Entropy, 22(10), 1174.
Zhang, K., Li, T., Shen, S., Liu, B., Chen, J., & Liu, Q. (2020). Adaptive graph convolutional network with attention graph clustering for co-saliency detection. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 9050-9059).
Su, Y., Deng, J., Sun, R., Lin, G., & Wu, Q. (2022). A Unified Transformer Framework for Group-based Segmentation: Co-Segmentation, Co-Saliency Detection and Video Salient Object Detection.