Automated Novel Heterogeneous Meditation Tradition Classification via Optimized Chi-Squared 1DCNN Method

Document Type : Research Paper

Authors

Department of Information Technology, Guru Ghasidas University (A Central University), Bilaspur (CG India).

10.22059/jitm.2023.95223

Abstract

The realm of human-computer interaction delves deep into understanding how individuals acquire knowledge and integrate technology into their everyday lives. Among the various methods for measuring brain signals, electroencephalography (EEG) stands out for its non-invasive, portable, affordable, and highly time-sensitive capabilities. Some researchers have revealed a consistent correlation between meditation practices and changes in the EEG frequency range, observed across a wide array of meditation techniques. Furthermore, the availability of EEG datasets has facilitated research in this field. This study explores the effectiveness of the One-Dimensional Convolutional Neural Network (CNN-1D) based novel classification method, which impressively achieved an 62% training accuracy, showcasing the robustness of these models in meditation classification tasks. The proposed methodology unveiling a novel method to differentiate neural oscillations in 4 types of meditators and control. This approach analyzes an EEG dataset of highly experienced meditators practicing Vipassana (VIP), Isha Shoonya (SYN), Himalayan Yoga (HYT), and untrained control subjects (CTR) by employing chi-square, CNN, hyperparameter models for data analysis, The outcomes indicate that different meditation types exhibit distinct cognitive features, enabling effective differentiation and classification.

Keywords


Abdel-Nabi, H., Al-Naymat, G., Ali, M. Z., & Awajan, A. (2023). HcLSH: A Novel Non-Linear Monotonic Activation Function for Deep Learning Methods. IEEE Access, 11, 47794–47815. https://doi.org/10.1109/ACCESS.2023.3276298
Adeli, H., & Ghosh-Dastidar, S. (2010). Wavelet-Chaos Methodology for Analysis of EEGs and EEG Sub-Bands. Automated EEG-Based Diagnosis of Neurological Disorders, 54(2), 119–141. https://doi.org/10.1201/9781439815328-c7
Ahani, A., Wahbeh, H., Nezamfar, H., Miller, M., Erdogmus, D., & Oken, B. (2014). Quantitative change of EEG and respiration signals during mindfulness meditation. In Journal of NeuroEngineering and Rehabilitation (11). http://www.jneuroengrehab.com/content/11/1/87
Akshay K, R., Sundar, S., & Muhammed Shanir, P. P. (2022). Emotion recognition from EEG signals using machine learning model. 2022 5th International Conference on Multimedia, Signal Processing and Communication Technologies, IMPACT 2022. https://doi.org/10.1109/IMPACT55510.2022.10029284
Alotaiby, T., El-Samie, F. E. A., Alshebeili, S. A., & Ahmad, I. (2015). A review of channel selection algorithms for EEG signal processing. Eurasip Journal on Advances in Signal Processing, 2015(1). https://doi.org/10.1186/s13634-015-0251-9
Avvaru, S., & Parhi, K. K. (2023). Effective Brain Connectivity Extraction by Frequency-Domain Convergent Cross-Mapping (FDCCM) and its Application in Parkinson' s Disease Classification. IEEE Transactions on Biomedical Engineering. https://doi.org/10.1109/TBME.2023.3250355
Braboszcz, C., Rael Cahn, B., Levy, J., Fernandez, M., & Delorme, A. (2017). Increased gamma brainwave amplitude compared to control in three different meditation traditions. PLoS ONE, 12(1). https://doi.org/10.1371/journal.pone.0170647
Chen, B., Guan, J., Li, Z., & Zhou, Z. (2023). Robust Feature Extraction via ℓ -Norm based Nonnegative Tucker Decomposition. IEEE Transactions on Circuits and Systems for Video Technology. https://doi.org/10.1109/TCSVT.2023.3275985
Chen, Y., Chang, R., & Guo, J. (2021). Effects of Data Augmentation Method Borderline-SMOTE on Emotion Recognition of EEG Signals Based on Convolutional Neural Network. IEEE Access, 9, 47491–47502. https://doi.org/10.1109/ACCESS.2021.3068316
Delorme, A., Sejnowski, T., & Makeig, S. (2007). Enhanced detection of artifacts in EEG data using higher-order statistics and independent component analysis. NeuroImage, 34(4), 1443–1449. https://doi.org/10.1016/j.neuroimage.2006.11.004
Dong, H. W., Mills, C., Knight, R. T., & Kam, J. W. Y. (2021). Detection of mind wandering using EEG: Within and across individuals. PLoS ONE, 16 (5 May 2021). https://doi.org/10.1371/journal.pone.0251490
Farokhah, L., Sarno, R., & Fatichah, C. (2023). Simplified 2D CNN Architecture with Channel Selection for Emotion Recognition Using EEG Spectrogram. IEEE Access, 11, 46330–46343. https://doi.org/10.1109/ACCESS.2023.3275565
Gevins, A. S., Yeager, C. L., Diamond, S. L., Spire, J. P., Zeitlin, G. M., & Gevins, A. H. (1975). Automated Analysis of the Electrical Activity of the Human Brain (EEG): A Progress Report. Proceedings of the IEEE, 63(10), 1382–1399. https://doi.org/10.1109/PROC.1975.9966
Ghaemi, A., Rashedi, E., Pourrahimi, A. M., Kamandar, M., & Rahdari, F. (2017). Automatic channel selection in EEG signals for classification of left or right hand movement in Brain Computer Interfaces using improved binary gravitation search algorithm. Biomedical Signal Processing and Control, 33, 109–118. https://doi.org/10.1016/j.bspc.2016.11.018
Houran, M. A., Badry, E. A., Abdel-Raman, A. B., Ali, M. H. E., Hassan, A., & Atallah, H. A. (n.d.). Developing Novel Robust Loss Functions-Based Classification Layers for DLLSTM Neural Networks. https://doi.org/10.1109/ACCESS.2017.Doi
Hsu, W. Y., & Cheng, Y. W. (2023). EEG-Channel-Temporal-Spectral-Attention Correlation for Motor Imagery EEG Classification. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 31, 1659–1669. https://doi.org/10.1109/TNSRE.2023.3255233
Kora, P., Meenakshi, K., Swaraja, K., Rajani, A., & Raju, M. S. (2021). EEG based interpretation of human brain activity during yoga and meditation using machine learning: A systematic review. In Complementary Therapies in Clinical Practice (43). Churchill Livingstone. https://doi.org/10.1016/j.ctcp.2021.101329
Lai, C. Q., Ibrahim, H., Abdullah, M. Z., Abdullah, J. M., Suandi, S. A., & Azman, A. (2018). Literature survey: Recording set up for electroencephalography (EEG) acquisition. 2018 IEEE Symposium on Computer Applications & Industrial Electronics (ISCAIE), 333–338. https://doi.org/10.1109/ISCAIE.2018.8405494
Mai, N.-D., Nguyen, H.-T., & Chung, W.-Y. (2023). Real-Time On-Chip Machine-Learning-Based Wearable Behind-The-Ear Electroencephalogram Device for Emotion Recognition. IEEE Access, 11, 47258–47271. https://doi.org/10.1109/ACCESS.2023.3276244
Majid Mehmood, R., Du, R., & Lee, H. J. (2017). Optimal Feature Selection and Deep Learning Ensembles Method for Emotion Recognition from Human Brain EEG Sensors. IEEE Access, 5, 14797–14806. https://doi.org/10.1109/ACCESS.2017.2724555
Mattioli, F., Porcaro, C., & Baldassarre, G. (2021). A 1D CNN for high accuracy classification and transfer learning in motor imagery EEG-based brain-computer interface. Journal of Neural Engineering, 18(6). https://doi.org/10.1088/1741-2552/ac4430
Moctezuma, L. A., & Molinas, M. (2020). EEG Channel-Selection Method for Epileptic-Seizure Classification Based on Multi-Objective Optimization. Frontiers in Neuroscience, 14. https://doi.org/10.3389/fnins.2020.00593
Pandey, P., & Prasad Miyapuram, K. (2020). Classifying Oscillatory Signatures of Expert vs NonExpert Meditators. 2020 International Joint Conference on Neural Networks (IJCNN), 1–7. https://doi.org/10.1109/IJCNN48605.2020.9207340
Parui, S., Samanta, D., & Chakravorty, N. (2022). SEC-EnD: Stacked Ensemble Correlation-based Feature Selection Method for Emotion Detection. Proceedings - 2022 IEEE Silchar Subsection Conference, SILCON 2022. https://doi.org/10.1109/SILCON55242.2022.10028868
Prasetya Wibawa, A., Aji Kurniawan, S., & Ari Elbaith Zaeni Assistant Professor, I. (2021). Determining Journal Rank by Applying Particle Swarm Optimization-Naive Bayes Classifier. Journal of Information Technology Management, 13(4), 116–125. https://doi.org/10.22059/JITM.2021.305435.2559
Samizade, R., & Abad, E. M. S. (2018). The Application of Machine Learning Algorithms for Text Mining based on Sentiment Analysis Approach. Journal of Information Technology Management, 10(2), 309–330. https://doi.org/10.22059/JITM.2017.215513.1807
Singh, S., Pandey, P., Chaudhary, S., Miyapuram, K. P., & Lomas, J. (2022). Towards the development of personalized and generalized interfaces for brain signals across different styles of meditation. ACM International Conference Proceeding Series. https://doi.org/10.1145/3571600.3571656
Stancin, I., Cifrek, M., & Jovic, A. (2021). A review of eeg signal features and their application in driver drowsiness detection systems. Sensors, 21 (11). MDPI AG. https://doi.org/10.3390/s21113786
Tee, J. L., Phang, S. K., Chew, W. J., Phang, S. W., & Mun, H. K. (2020). Classification of meditation states through EEG: A method using discrete wavelet transform. AIP Conference Proceedings, 2233. https://doi.org/10.1063/5.0001375
Wang, H., Jiang, J., Gan, J. Q., & Wang, H. (2023). Motor Imagery EEG Classification Based on a Weighted Multi-branch Structure Suitable for Multisubject Data. IEEE Transactions on Biomedical Engineering. https://doi.org/10.1109/TBME.2023.3274231
Xiao, P., Qin, Z., Chen, D., Zhang, N., Ding, Y., Deng, F., Qin, Z., & Pang, M. (2023). FastNet: A Lightweight Convolutional Neural Network for Tumors Fast Identification in Mobile-Computer-Assisted Devices. IEEE Internet of Things Journal, 10(11), 9878–9891. https://doi.org/10.1109/JIOT.2023.3235651
Zamani, F., & Wulansari, R. (2021). Emotion Classification using 1D-CNN and RNN based On DEAP Dataset. 363–378. https://doi.org/10.5121/csit.2021.112328