Alizadeh, A. A., Eisen, M. B., Davis, R. E., Ma, C., Lossos, I. S., Rosenwald, A., ...&Staudt, L. M. (2000). Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature, 403(6769), 503-511.
Alaei, H. K., Salahshoor, K., &Alaei, H. K. (2013). A new integrated on-line fuzzy clustering and segmentation methodology with adaptive PCA approach for process monitoring and fault detection and diagnosis. soft computing, 17(3), 345-362.
Agustı, L. E., Salcedo-Sanz, S., Jiménez-Fernández, S., Carro-Calvo, L., Del Ser, J., &Portilla-Figueras, J. A. (2012). A new grouping genetic algorithm for clustering problems. Expert Systems with Applications, 39(10), 9695-9703.
Alon, U., Barkai, N., Notterman, D. A., Gish, K., Ybarra, S., Mack, D., & Levine, A. J. (1999). Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proceedings of the National Academy of Sciences, 96(12), 6745-6750.
Bezdek, J. (1981). Pattern Recognition with Fuzzy Objective Algorithms Plenum Press New York Google Scholar.
Bandyopadhyay, S., &Maulik, U. (2002). Genetic clustering for automatic evolution of clusters and application to image classification. Pattern recognition, 35(6), 1197-1208.
Bandyopadhyay, S. (2005). Simulated annealing using a reversible jump Markov chain Monte Carlo algorithm for fuzzy clustering. IEEE Transactions on Knowledge and data Engineering, 17(4), 479-490.
Chu, S., DeRisi, J., Eisen, M., Mulholland, J., Botstein, D., Brown, P. O., &Herskowitz, I. (1998). The transcriptional program of sporulation in budding yeast. Science, 282(5389), 699-705.
Das, S., Konar, A., &Chakraborty, U. K. (2005, June). Two improved differential evolution schemes for faster global search. In Proceedings of the 7th annual conference on Genetic and evolutionary computation (pp. 991-998).
Deb, K., & Agrawal, R. B. (1995). Simulated binary crossover for continuous search space. Complex systems, 9(2), 115-148.
Deb, K., & Tiwari, S. (2008). Omni-optimizer: A generic evolutionary algorithm for single and multi-objective optimization. European Journal of Operational Research, 185(3), 1062-1087.
Deb, K., Pratap, A., Agarwal, S., &Meyarivan, T. A. M. T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE transactions on evolutionary computation, 6(2), 182-197.
De Souto, M. C., Costa, I. G., de Araujo, D. S., Ludermir, T. B., &Schliep, A. (2008). Clustering cancer gene expression data: a comparative study. BMC bioinformatics, 9(1), 1-14.
Ester, M., Kriegel, H. P., Sander, J., &Xu, X. (1996, August). A density-based algorithm for discovering clusters in large spatial databases with noise. In Kdd (Vol. 96, No. 34, pp. 226-231).
Horta, D., De Andrade, I. C., &Campello, R. J. (2011). Evolutionary fuzzy clustering of relational data. Theoretical Computer Science, 412(42), 5854-5870.
Iyer, V. R., Eisen, M. B., Ross, D. T., Schuler, G., Moore, T., Lee, J. C., ...& Brown, P. O. (1999). The transcriptional program in the response of human fibroblasts to serum. science, 283(5398), 83-87.
Jain, A. K., Murty, M. N., & Flynn, P. J. (1999). Data clustering: a review. ACM computing surveys (CSUR), 31(3), 264-323.
Kriegel, H. P., Kröger, P., Sander, J., &Zimek, A. (2011). Density‐based clustering. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 1(3), 231-240.
Kruglyak, S., &Yooseph, S. (1999). Exploring expression data: identification and analysis of coexpressed genes. Genome research, 9(11), 1106-1115.
Liu, Y., Wu, X., &Shen, Y. (2011). Automatic clustering using genetic algorithms. Applied mathematics and computation, 218(4), 1267-1279.
Mezura-Montes, E., &Coello, C. A. C. (2011). Constraint-handling in nature-inspired numerical optimization: past, present and future. Swarm and Evolutionary Computation, 1(4), 173-194.
Maulik, U., &Bandyopadhyay, S. (2003). Fuzzy partitioning using a real-coded variable-length genetic algorithm for pixel classification. IEEE Transactions on geoscience and remote sensing, 41(5), 1075-1081.
Noorbehbahani, F., Mousavi, S. R., &Mirzaei, A. (2015). An incremental mixed data clustering method using a new distance measure. Soft Computing, 19(3), 731-743.
Ni, Q., Pan, Q., Du, H., Cao, C., &Zhai, Y. (2015). A novel cluster head selection algorithm based on fuzzy clustering and particle swarm optimization. IEEE/ACM transactions on computational biology and bioinformatics, 14(1), 76-84.
Pal, N. R., &Bezdek, J. C. (1995). On cluster validity for the fuzzy c-means model. IEEE Transactions on Fuzzy systems, 3(3), 370-379.
Rousseeuw, P. J. (1987). Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. Journal of computational and applied mathematics, 20, 53-65.
Rezaee, M. R., Lelieveldt, B. P., &Reiber, J. H. (1998). A new cluster validity index for the fuzzy c-mean. Pattern recognition letters, 19(3-4), 237-246.
Ravi, V., Aggarwal, N., & Chauhan, N. (2010, December). Differential evolution based fuzzy clustering. In International Conference on Swarm, Evolutionary, and Memetic Computing (pp. 38-45). Springer, Berlin, Heidelberg.
Sheng, W., Swift, S., Zhang, L., & Liu, X. (2005). A weighted sum validity function for clustering with a hybrid niching genetic algorithm. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 35(6), 1156-1167.
Saha, I., Plewczynski, D., Maulik, U., &Bandyopadhyay, S. (2012). Improved differential evolution for microarray analysis. International journal of data mining and bioinformatics, 6(1), 86-103.
Saha, S., &Bandyopadhyay, S. (2009). A new point symmetry based fuzzy genetic clustering technique for automatic evolution of clusters. Information Sciences, 179(19), 3230-3246.
Saha, S., Ekbal, A., Gupta, K., &Bandyopadhyay, S. (2013). Gene expression data clustering using a multiobjective symmetry based clustering technique. Computers in biology and medicine, 43(11), 1965-1977.
Saha, S., Das, R., &Pakray, P. (2018). Aggregation of multi-objective fuzzy symmetry-based clustering techniques for improving gene and cancer classification. Soft Computing, 22(18), 5935-5954.
Tou, J. T., & Gonzalez, R. C. (1974). Pattern recognition principles Addison-Wesley Reading.
Tvrdik, J., &Křivý, I. (2015). Hybrid differential evolution algorithm for optimal clustering. Applied Soft Computing, 35, 502-512.
Tamayo, P., Slonim, D., Mesirov, J., Zhu, Q., Kitareewan, S., Dmitrovsky, E., ...&Golub, T. R. (1999). Interpreting patterns of gene expression with self-organizing maps: methods and application to hematopoietic differentiation. Proceedings of the National Academy of Sciences, 96(6), 2907-2912.
Xie, X. L., &Beni, G. (1991). A validity measure for fuzzy clustering. IEEE Transactions on pattern analysis and machine intelligence, 13(8), 841-847.
Yang, X. S., & Deb, S. (2014). Cuckoo search: recent advances and applications. Neural Computing and Applications, 24(1), 169-174.
Yue, S., Wang, J., Wang, J., &Bao, X. (2016). A new validity index for evaluating the clustering results by partitional clustering algorithms. Soft Computing, 20(3), 1127-1138.
Wen, X., Fuhrman, S., Michaels, G. S., Carr, D. B., Smith, S., Barker, J. L., & Somogyi, R. (1998). Large-scale temporal gene expression mapping of central nervous system development. Proceedings of the National Academy of Sciences, 95(1), 334-339.