Big Data Analytics and Now-casting: A Comprehensive Model for Eventuality of Forecasting and Predictive Policies of Policy-making Institutions

Document Type: Research Paper

Authors

1 Ph.D. Candidate in Information Technology Management/ Business Intelligence, Department of Information Technology Management, Science and Research Branch, Islamic Azad University, Tehran, Iran.

2 Associate Professor, Department of Industrial Management, Science and Research Branch, Islamic Azad University, Tehran, Iran.

3 Associate Professor, Department of Information Technology Management, Science and Research Branch, Islamic Azad University, Tehran, Iran.

4 Professor, Department of Management, Tarbiat Modares University, Tehran, Iran.

5 Associate Professor, Department of Management, Sharif University of Technology, Tehran, Iran.

Abstract

The ability of now-casting and eventuality is the most crucial and vital achievement of big data analytics in the area of policy-making. To recognize the trends and to render a real image of the current condition and alarming immediate indicators, the significance and the specific positions of big data in policy-making are undeniable. Moreover, the requirement for policy-making institutions to produce a structured model based on big data analytics for now-casting and eventuality of predictive policies is growing rapidly. The literature review demonstrates that a comprehensive model to assist policy-making institutions by providing all components and indicators in now-casting of predictive policies based on big data analytics is not devised yet. The presentation of the model is the main finding of this research. This research aims to provide a comprehensive model of now-casting and eventuality of predictive policies based on big data analytics for policy-making institutions. The research findings indicate that the dimensions of the comprehensive model include: the alignment of now-casting strategies and the big data analytics’ architecture, now-casting ecosystem, now-casting data resources, now-casting analytics, now-casting model and now-casting skill. The results of using the model were analyzed and the recommendations were presented.

Keywords

Main Subjects


Agerri, R., Artola, X., Beloki, Z., Rigau, G., & Soroa, A. (2015). Big data for natural language processing: a streaming approach. Knowledge Based System, 79, 36-42.

Ahrens, J., Brislawn, K., Martin, K., Geveci, B., Law, C. C., & Papka, M. (2001). Large-scale data visualization using parallel data streaming. IEEE Computer Graph, 21, 34-41.

Alexander, L., Das, S. R., Ives, Z., Jagadish, H. V., & Monteleoni, C. (2017). Research challenges in financial data modeling and analysis. Michigan conference: Big Data in Finance. Michigan.

Alvarez, R. M., & Perez-Quiros, G. (2016). Aggregate versus disaggregate information in dynamic factor models. International Journal of Forecasting, 32, 680- 694.

Andersson, M. K., & Reijer, A. H. (2015). Nowcasting. Sveriges RIKSBANK Economic Review.

Arribas-Bel, D. (2013). Accidental, open and everywhere: Emerging data sources for the understanding of cities. Applied Geography, forthcoming.

Ashley, J., Driver, R., Hayes, S., & Jeffery, C. (2005). Dealing with data uncertainty. Bank of England Quarterly Bulletin, Spring.

Askitas, N., & Zimmermann, K. F. (2009). Google econometrics and unemployment forecasting. Applied Economics Quarterly, 55(2), 107–120.

Assunção, M. D., Calheiros, R. N., Bianchi, S., Netto, M. A., & Buyya, R. (2015). Big data computing and clouds: trends and future directions. J. Parallel Distrb. Comput., 79, 3–15.

Atsalakis, G. S., & Valavanis, K. P. (2009). Surveying stock market forecasting techniques – Part II: Soft computing methods. Expert Systems with Applications, 36(3), 5932-5941.

Baldacci, E., Buono, D., Kapetanlos, G., Krische, S., Marcellino, M., Mazzi, G. L., & Papailias, F. (2016). Big data and macroeconomic nowcasting: From data access to modelling. EuroStat.

Bańbura, M., & Modugno, M. (2014). Maximum likelihood estimation of factor models on datasets with arbitrary pattern of missing data. Journal of Applied Econometrics, 29(1), 133-160.

Bańbura, M., Giannone, D., & Lenza, M. (2014-2015). Conditional forecasts and scenario analysis with vector autoregressions for large cross-section. Working Papers ECARES ECARES.

Bańbura, M., Giannone, D., & Reichlin, L. (2010). Large Bayesian vector autoregressions. Journal of Applied Econometrics, 25(1), 71-92.

Banbura, M., Giannone, D., Modugno, M., & Reichlin, L. (2013). Now-casting and the real-time data flow. In G. Elliot, & A. Timmermann (Eds.), Handbook of Economic Forecasting (Vol. 2). North-Holland.

Banbura, M., Giannone, D., Modugno, M., & Reichlin, L. (2013). Now-casting and the real-time data flow. European Central Bank - EURSYSTEM, 1564.

Banerjee, A., Marcellino, M., & Masten, I. (2014). Forecasting with Factor-augmented Error Correction Models. International Journal of Forecasting, 30(3), 589-612.

Basel Committee on Banking Supervision. (2018, June 21). Progress in adopting the Principles for effective risk data aggregation and risk reporting. Retrieved June 12, 2019, from http://www.bis.org/bcbs/publ/d443.htm

Bean, R. (2017). How Big data is empowering ai and machine learning at scale. MITSloan Management, 10.

Bernanke, B., Boivin, J., & Eliasz, P. S. (2005). Measuring the effects of monetary policy: A factoraugmented vector autoregressive approach. The Quarterly Journal of Economics, 120(1), 387-422.

Bernstein, P. A., & Haas, L. M. (2008). Information integration in the enterprise. Communications of the ACM, 51(9), 72-79.

Bhatt, D., & Chopade, M. (2018, March 11). A quick comparison of the five best big data frameworks. Retrieved June 12, 2019, from https://opensourceforu.com/2018/03/a-quick-comparison-of-the-fivebest-big-data-frameworks/

Big Data Framework. (2018, Aug 2). Formulating a big data strategy - How to define a big data strategy. Retrieved June 12, 2019, from https://www.bigdataframework.org/formulating-a-big-data-strategy/

BLOG. (2017, Aug 2). Blog. Retrieved June 12, 2019, from https://www.newgenapps.com/blog/how-to-create-successful-big-data-strategy

Blumenstock, J. E., Cadamuro, G., & On, R. (2015). Predicting poverty and wealth from mobile phone metadata. Working Paper, 350(6264).

Blumenstock, J., & Eagle, N. (2010). Mobile divides: Gender, socioeconomic status, and mobile phone use in Rwanda. 4th ACM/IEEE Int, 6, 1-10.

Bolón-Canedo, V., Sánchez-Maroño, N., & Alonso-Betanzos, A. (2014). Data classification using an ensemble of filters. Neurocomputing, 135, 13-20.

Bolón-Canedo, V., Sánchez-Maroño, N., & Alonso-Betanzos, A. (2015). Recent advances and emerging challenges of feature selection in the context of big data. Knowledge Based System, 86, 33-45.

Bordoloi, S., Biswas, D., Singh, S., Manna, U. K., & Saggar, S. (2010). Macroeconomic forecasting using dynamic factor models. Reserve Bank of India Occasional Papers, 31(2), 69-83.

Box, G. E., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2015). Time series analysis: Forecasting and control (5th Edition ed.). Wiley.

Bragolia, D., & Modugno, M. (2017). Now-casting the Japanese economy. International Journal of Forecasting, 33(2), 390-402.

Brown, G., Buccellato, T., Chamberlin, G., Dey–Chowdhury, D., & Youll, R. (2009). Understanding the quality of early estimates of gross domestic product. Economic & Labour Market Review, 43-51.

Burdick, D., Fagin, R., Kolaitis, P. G., Popa, L., & Tan, W. -c. (2015). A declarative framework for linking entities. Internal Conference on Database Theory (ICDT), (pp. 25-43).

Butaru, F., Chen, Q., Clark, B., Das, S., Lo, A. W., & Siddique, A. (2016). Risk and risk management in the credit card industry. Journal of Banking and Finance, 72, 218--239. Retrieved June 12, 2019, from  http://www.sciencedirect.com/science/article/pii/S0378426616301340

Camacho, M., & Sancho, I. (2003). Spanish diffusion indexes. Spanish Economic Review, 5(3), 173-203.

Carbone, A., Jensen, M., & Sato, A. (2016). Challenges in data science: A complex systems perspective. Chaos, Solitons and Fractals. Chaos, Solitons and Fractals, 90, 1-7

Carlsen, M., & Storgaard, P. E. (2010). Dankort payments as a timely indicator of retail sales in Denmark. Working Paper 66, Danmarks National Bank.

Carriero, A., Clark, T. E., & Marcellino, M. (2012a). Real-time nowcasting with a Bayesian mixed frequency model with stochastic volatility. Federal Reserve Bank of Cleveland, Working Paper, 1227.

Carriero, A., Kapetanios, G., & Marcellino, M. (2011). Forecasting large datasets with bayesian reduced rank multivariate models. Journal of Applied Econometrics, 26(5), 735-761.

Casey, M. (2014). Emerging opportunities and challenges with central bank data. the 7th ECB Statistics Conference. Retrieved June 12, 2019, from https://www.ecb.europa.eu/events/pdf/ conferences/141015/presentations/Emerging_opportunities_and_chalenges_with_Central_ Bank_datapresentation.pdf?6074ecbc2e58152dd41 a9543b1442849

Chamberlin, G. (2010). Real-time data. Economic & Labour Market Review, 4(6).

Chen, C. P., & Zhang, C. -Y. (2014). Data-intensive applications, challenges, techniques and technologies: A survey on big data. Information Sciences, 275, 314-347.

Chen, X., & Lin, X. (2014). Big data deep learning: Challenges and perspectives. IEEE, 2, 514-525. doi:10.1109/ACCESS.2014.2325029

Chernis, T., & Sekkel, R. (2017). A Dynamic factor model for nowcasting Canadian GDP growth. Bank of Canada Staff Working Paper, 2.

Choi, H., & Varian, H. (2012). Predicting the present with Google Trends. Economic Record, 88(s1), 2-9.

Chudik, A., Kapetanios, G., & Hashem Pesaran, M. (2016). Big data analytics: A new perspective. Federal Reserve Bank of Dallas Globalization and Monetary Policy Institute, 268. Retrieved June 12, 2019, from http://www.dallasfed.org/assets/documents/institute/wpapers/2016/0268.pdf

Clements, M. P., & Galvão, A. B. (2008). Macroeconomic forecasting with mixed frequency data: Forecasting output growth in the United States. Journal of Business and Economic Statistics, 26(4), 546-554.

 

Coates, A., & Ng, A. (2011). The importance of encoding versus training with sparse coding and vector quantization. Proceedings of the 28th International Conference onMachine Learning (pp. 921-928). Omnipress.

Concurrence, B. L. (2016). Competition law and data. Retrieved June 12, 2019, from http://www.bundeskartellamt.de/SharedDocs/Publikation/DE/Berichte/Big%20Data%20Papie r.html

Corcoran, M. (2015). The five types of analytics. Information Builder.

Cukier, K. (2010). Data, data everywhere. The Economist. Retrieved June 12, 2019, from http://www.economist.com/node/15557443

Das, S. (2016). Matrix metrics: Network-based systemic risk scoring. Journal of Alternative Investments, Special Issue on Systemic Risk, 18(4), 33-51.

DelSole, T., Monteleoni, C., McQuade, S., Tippett, M. K., Pegion, K., & Shukla, J. (2015). Tracking seasonal prediction models. Proceedings of the Fifth International Workshop on Climate Informatics.

Dhar, V. (2013). Data science and prediction. Communications of the ACM, 56(12).

Diebold, F. X. (2003). Big data dynamic factor models for macroeconomic measurement and forecasting. (M. Dewatripont, L. P. Hansen, & S. Turnovsky, Eds.) Advances in Economics and Econometrics, Eighth World Congress of the Econometric Society, 115-122.

Dixon, M., Klabjan, D., & Bang, J. H. (2015). Implementing deep neural networks for financial market prediction on the Intel Xeon Phi. Proceedings of the 8th Workshop on High Performance Computational Finance, (pp. 1-6).

Domingos, P. (2012). A few useful things to know about machine learning. Communications of the ACM, 55(10), 78-87.

Dong, L. X., & Srivastav , D. (2013). Big data integration. In: 29th International conference on data engineering (ICDE), (pp. 1245-1248).

Donoho, D. L., & Stodden, V. C. (2006). Breakdown point of model selection when the number of variables exceeds the number of observations. International Joint Conference on Neural Networks. Retrieved June 12, 2019, from http://academiccommons.columbia.edu/item/ac:140168

Doornik, J. A., & Hendry, D. F. (2015). Statistical model selection with big data. Cogent Economics & Finance, 3(1).

Dou, W. W., Lo, A. W., & Muley, A. (2015). Macroeconomic models for monetary policies: A critical review from a finance perspective. Retrieved January 14, 2017, from http://dx.doi.org/10.2139/ssrn.2899842

Doz, C., Giannone, D., & Reichlin, L. (2012). A quasi–maximum likelihood approach for large, approximate dynamic factor models. Review of Economics and Statistics, 94, 1014–1024.

Duarte, C., Rodrigues, P. M., & Rua, A. (2017). A Mixed frequency approach to the forecasting of private consumption with ATM/POS data. International Journal of Forecasting, Elsevier, 15.

Dumbill, E. (2012). What is big data? An introduction to the big data landscape. Retrieved June 12, 2019, from http://strata.oreilly.com/2012/01/what-is-big-data.html

Dunis, C. L., Laws, J., & Sermpinis, G. (2011). Higher order and recurrent neural architectures for trading the EUR/USD exchange rate. Quantitative Finance, 11(4), 615-629.

Dynan, K., & Elemendorf. (2005). Do provisional estimates of output miss turning points? ResearchGate. doi: 10.2139/ssrn.293886

Efron, B. (2010). Large-scale inference: Empirical Bayes methods for estimation, Testing and Prediction. Cambridge University Press.

Einav, L., & Levin, D. (2013). The data revolution and economic analysis. Working Paper No. 19035, National Bureau of Economic Research.

Elaraby, N. M., Elmogy, M., & Barakat, S. (2016). Deep learning: Effective tool for big data analytics. International Journal of Computer Science Engineering (IJCSE), 9.

Elmer, S. G. (2011). Modern statistical methods applied to economic time series. KOF Dissertation Series, 6.

Esteves, P. S. (2009). Are ATM/POS data relevant when nowcasting private consumption? Banco de Portugal.

Fan, J., Han, F., & Liu, H. (2014). Challenges of big data analysis. National Science Review, 1(2), 293-314.

Faust, J., & Wright, J. H. (2013). Forecasting inflation. Elsevier North-Holland, 2, 3-56.

Federal Reserved Bank. (2017). Nowcasting Report. The FRBNY Staff Nowcast.

Figueiredo, F. R. (2010). Forecasting Brazilian inflation using a large dataset. Central Bank of Brazil, Working Paper, 228. Retrieved June 12, 2019, from http://www.bcb.gov.br/pec/wps/ingl/wps228.pdf

Flood, M. D., Jagadish, H. V., & Raschid, L. (2016). Big data challenges and opportunities in financial stability monitoring. Banque de France, Financial Stability Review 20, 14.

Flood, M. D., Mendelowitz, A., & Nichols, W. (2013). Monitoring financial stability in a complex world. (V. Lemieux, Ed.) Springer, 15-46.

Forni, M., Hallin, M., Lippi, M., & Reichlin, L. (2005). The generalized dynamic factor model: Onesided estimation and forecasting. Journal of the American Statistical Association, 100(471), 830-840.

Foster, J. (2016). Central banking 2020: Ahead of the curve. PwC. Retrieved from www.pwc.com/banking

Galbraith, J. W., & Tkacz, G. (2013). Analyzing economic effects of september 11 and other extreme events using debit and payments system data. Canadian Public Policy, 39, 119-134.

Galbraith, J. W., & Tkacz, G. (2016). Nowcasting with payments system data. International Journal of Forecasting, Elsevier.

Galeshchuk, S. (2016). Neural networks performance in exchange rate prediction. Neurocomputing, 172, 446- 452.

Galeshchuk, S., & Mukherjee, S. (2017). Deep learning for predictions in emerging currency markets. The 9th International Conference on Agents and Artificial Intelligence, Science and Technology. ResearchGate. doi:10.5220/0006250506810686

Gandomi, A., & Haider, M. (2015). Beyond the hype: big data concepts, methods, and analytics. International Journal of Information Management, 35(2), 137-144.

Ghysels, E., Santa-Clara, P., & Valkanov, R. (2004). The MIDAS touch: Mixed data sampling regression models. CIRANO Working Paper, 2004s-20.

Ghysels, E., Santa-Clara, P., & Valkanov, R. (2006a). Predicting volatility: Getting the most out of return data sampled at diferent frequencies. Journal of Econometrics, 131(1-2), 59-95.

Ghysels, E., Sinko, A., & Valkanov, R. (2007). MIDAS regressions: Further results and new directions. Econometric Reviews, 26(1), 53-90.

Giannone, D., Lenza, M., & Primiceri, G. (2015). Prior selection for vector autoregressions. The Review of Economics and Statistics, 97, 436–451.

Ginsberg, J., Mohebbi, M., H, M., Patel, R. S., Brammer, L., Smolinski, M. S., & Brilliant, L. (2009). Detecting influenza epidemics using search engine query data. Nature, 457(7232), 1012–14.

Giovanelli, A. (2012). Nonlinear forecasting using large datasets: Evidence on US and Euro area economies. CEIS Tor Vergata, 10(13), 1-29. Retrieved June 12, 2019, from http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2172399

Global Pluse. (2013). Mobile phone network data. United Nations Global Pluse, 1-12.

Gobble, M. M. (2013). Big data: The next big thing in innovation. Research Technology Management, 56, 64-66.

Godbout, C., & Lombardi, M. J. (2012). Short-term forecasting of the Japanese economy using factor models. ECB Working Paper, 1428.

Godfried, I. (2018, Nov 16). Synthesizing big data frameworks and deep learning. Retrieved June 12, 2019, from https://towardsdatascience.com/synthesizing-big-data-frameworks-and-deep-learning603674d10c44

Goel, S., Hofman, J. M., Lahaie, S., Pennock, D. M., & Watts, D. J. (2010). Predicting consumer behavior with Web search. Proceedings of the National Academy of Sciences of the United States of America, 107(41), 17486–90.

Gupta, R., Kabundi, A., Miller, S., & Uwilingiye, J. (2013). Using large datasets to forecast sectoral unemployment. Statistical Methods & Applications, forthcoming.

Halevy, A., Rajaraman, A., & Ordille, J. (2006). Data integration: the teenage years. In: Proceedings of the 32nd international conference on very large data bases (VLDB ‘06), (pp. 9-16).

Hassani, H., & Silva, E. S. (2015). Forecasting with big data: A review. Annals of Data Science, 20.

Hassani, H., Saporta, G., & Silva, E. S. (2014). Data mining and official statistics: The past, the present & the future. Big Data, 2(1), BD1-BD10.

He, D. (2016). Recent developments in central bank governance - An overview. Presentation at De Nederlandsche Bank. 13. Amsterdam: IMF.

He, Q., Wang, H., Zhuang, F., Shang, T., & Shi, Z. (2015). Parallel sampling from big data with uncertainty distribution. Fuzzy Sets System, 258, 117-133.

He, W., Wu, H., Yan, G. J., Akula, V., & Shen, J. C. (2015). A novel social media competitive analytics framework with sentiment benchmarks. Information Manage-Amsterdam, 801-812.

Hey, A. J., Tansley, S., & Tolle, K. M. (2009). The Fourth Paradigm: DataIntensive Scientific Discovery. Microsoft Research, Redmond, WA.

Higgins, P. (2014). GDPNow: A Model for GDP Nowcasting. Federal Reserve Bank of Atlanta. Working Paper, 4.

Hilbert, M. (2013). Big data for development. Retrieved June 12, 2019, from http://www.rwandalanduse.rnra.rw

Hindman, M. (2015). Building better models prediction, replication, and machine learning in the social sciences. Ann. Am. Acad. Polit. Social Science, 659, 48-62.

Hindrayanto, I., JanKoopman, S., & Winter, J. d. (2016). Forecasting and nowcasting economic growth in the Euro Area Using Factor Models. International Journal of Forecasting, Elsevier, 22.

Hinton, G. E., & Salakhutdinov, R. (2006). Reducing the dimensionality of data with neural networks. Science, 313(5786), 504-507.

Hoog, S. V. (2016). Deep learning in agent-based models: A prospectus. Working Papers in Economics and Management, 19.

Houghton, J., & Siegel, M. (2016). Advanced data analytics for system dynamics models using PySD. Retrieved June 12, 2019, from https://www.systemdynamics.org/assets/conferences/2015/proceed/papers/P1172.pdf

Huck, N. (2009). Pairs selection and outranking: An application to the S&P 100 index. European Journal of Operational Research, 196(2), 819-825.

Huck, N. (2010). Pairs trading and outranking: The multi-step-ahead forecasting case. European Journal of Operational Research, 207(3), 1702–1716.

Hunter, M. (2014). Statement by Maryann F. Hunter. Retrieved June 12, 2019, from http://www.federalreserve.gov/newsevents/testimony/

Hyndman, R. J., & Athanasopoulos, G. (2013). Forecasting: Principles and practice. Otexts, Australia.

IBM. (2016). The four v’s of big data. Retrieved June 12, 2019, from http://www.ibmbigdatahub.com/infographic/four-vs-bigdata

Jacobs, A. (2009). The pathologies of big data. Commun. ACM, 52, 36-44.

Jadhav, D. K. (2013). Big data: The new challenges in data mining. International Journal of Innovative Research in Computer Science & Technology, 1(2), 39-42.

Jagadish, H. V., Gehrke, J., Papakonstantinou, A., Patel, Y., Ramakrishnan, R., & Shahabi, C. (2014). Big data and its technical challenges. Communications of the ACM, 57(7), 86-94.

Jansen, W. J., Jinb, X., & Winter, J. M. (2016). Forecasting and nowcasting real GDP: Comparing statistical models and subjective forecasts. International Journal of Forecasting, Elsevier, 26.

Kapetanios, G., & Marcellino, M. (2009). A parametric estimation method for dynamic factor models of large dimensions. Journal of Time Series Analysis, 30(2), 208-238.

Kapetanios, G., & Papailias, F. (2018). Big data & macroeconomic nowcasting: Methodological review. Economic Statistics Centre of Excellence, National Institute of Economic and Social Research.

Kapetanios, G., Marcellino, M., & Papailias, F. (2016). Big data and macroeconomic nowcasting. European Commission, Worldwide Consultants, 79.

Kim, J.-S., kim, E.-S., & kim, J.-H. ,. (2016). Towards conceptual predictive modeling for big data framework. International Journal of Software Engineering and Its Applications, 10(1), 35-42.

Kliesen, K. (2017). Hard data, soft data and forecasting. Retrieved June 12, 2019, from https://www.stlouisfed.org/on-the-economy/2067/may/hard-data-softdata-forecasting

Kliesen, K. L., & McCracken, M. W. (2016). Tracking the U.S. economy with nowcasts. The Regional Economist, 3.

Konchitchki, Y., & Patatoukas, P. N. (2016). From forecastingto nowcasting the macroeconomy: A granular-origins approach using financial accounting data. University of California at Berkeley, Haas School of Business.

Koop, G. M. (2013). Forecasting with medium and large Bayesian VARs. Journal of Applied Econometrics, 28(2), 177-203.

Koturwar, S., & Merchant, S. N. (2018). Weight initialization of deep neural networks (DNNs) using data statistics. Elsevier, arXiv:1710.10570v2.

Kraska, T. (2013). Finding the needle in the big data systems haystack. IEEE Intern. Comput., 17, 84-86.

Krasser, M. (2018). Deep feature consistent variational auto-encoder. Retrieved June 12, 2019, from http://krasserm.github.io/2018/07/27/dfc-vae/

Kroft, K., & Pope, D. G. (2014). Does online search crowd out traditional search and improve matching efficiency? Journal of Labor Economics, 32(2), 259–303.

Kuhn, P., & Mansour, H. (2014). Is internet job search still ineffective? Economic Journal, 124(581), 1213–1233.

Kuhn, P., & Skuterud, M. (2004). Internet job search and unemployment durations. American Economic, Review, 94(1), 218–232.

Kundu, S., & Pal, S. K. (2015). FGSN: fuzzy granular social networks – model and applications. Information Science, 314, 100-117.

Lahiri, K., & Monokroussos, G. (2013). Nowcasting US GDP: The role of ISM business surveys. International Journal of Forecasting, 29, 644–658.

Lahiri, K., Monokroussos, G., & Zhao, Y. (2015). Forecasting Consumption: The role of consumer confidence in real-time with many predictors. Journal of Applied Econometrics.

Laney, D. (2001). 3D data management: Controlling data volume, velocity and variety. Meta Group. Retrieved June 12, 2019, from http://blogs.gartner.com/douglaney/files/2012/01/ad949-3DData-Management-Controlling-Data-Volume-Velocity-andVariety.pdf

Lazer, D., Kennedy, R., King, G., & Vespignani, A. (2014). The parable of Google flu: Traps in big data analysis. Science, 143, 1203-1205.

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521, 436–444.

Lee, H., Largman, Y., Pham, P., & Ng, A. (2009). Unsupervised feature learning for audio classification using convolutional deep belief networks. Advances in Neural Information Processing Systems, 22.

Letouzé, E. (2014). What is big data, and could it transform development policy?

Levkovitz, R. (2014). Forecasting and big data analysis. Ogentech Ltd., 17.

Li, X. (2016). Nowcasting with big data: Is Google useful in presence of other information? London Business School.

Lin, C. W., & Hong, T. P. (2013). A survey of fuzzy web mining, Wires. Data Mining Knowledge, 3, 190-199.

Lohr, S. (2013). The age of big data. Retrieved June 12, 2019, from http://www.nytimes.com/2012/02/12/sunday-review/big-datas-impact-in-theworld.html

Madden, S. (2012). From databases to big data. IEEE Internet Comput, 16(3), 4–6.

Mahani, A. S., & Sharabiani, M. T. (2015). SIMD parallel MCMC sampling with applications for big-data Bayesian analytics. Comput. Stat. Data Anal., 88, 75-99.

Maldonado, S., Weber, R., & Basak, J. (2011). Simultaneous feature selection and classification using kernel-penalized support vector machines. Information Science, 181, 115-128.

Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C., & Byers, A. H. (2012). Big data: The next frontier for innovation, competition, and productivity. McKinsey Global Institute.

Marcellino, M., & Schumacher, C. (2010). Factor MIDAS for nowcasting and forecasting with raggededge data: A model comparison for German GDP. Oxford Bulletin of Economics and Statistics, 77, 518–55.

Marz, N., & Warren, J. (2013). Big data: Principles and best practices of scalable reatime data systems. Manning Publications.

Matta, S. (2014). New coincident and leading indicators for the Lebanese economy. World Bank Policy Research Working Paper, 6950.

Mauro, D. A., Greco, M., & Grimaldi, M. (2016). A formal definition of big data based on its essential features. Library Review, 65(3), 122-135.  

Mayer-Schoenberger, V., & Cukier, K. (2013). Big data: A revolution that will transform how we live, work and think. John Murray.

Mayo, M. (2016). Top big data processing frameworks. Analytics Summit 2019, Conference and Training. Retrieved June 12, 2019, from https://www.kdnuggets.com/2016/03/top-big-data-processing-frameworks.html

McQuade, S., & Monteleoni, C. (2015). Multi-task learning from a single task: Can different forecast periods be used to improve each other? Proceedings of the Fifth International Workshop on Management of Climate Informatics.

McQuade, S., & Monteleoni, C. (2016). Online learning of volatility from multiple option term lengths. Proceedings of the Second International Workshop on Data Science for MacroModeling. doi:10.1145/2951894.2951902

Meese, R., & Rogoff, K. (1983). The out-of-sample failure of empirical exchange rate models: Sampling error or misspecification? NBER Chapters, in Exchange Rates and International Macroeconomics, 67-112.

Mellander, C., Lobo, J., Stoarick , K., & Matheson, Z. (2015). Night-time light data: A good proxy measure for economic activity? PLOS ONE, 10(10), 1–18.

Merton, R. C., Billio, M., Getmansky, M., Gray, D., Lo, A., & Pelizzon, L. (2013). On a new approach for analyzing and managing macrofinancial risks. Financial Analysts Journal, 69(2), 22-33.

Mol, C. D., Giannone, D., & Reichlin, L. (2008). Forecasting using a Large Number of Predictors: Is Bayesian Shrinkage a Valid Alternative to Principal Components? Journal of Econometrics, 146(2), 318-328.

Molavipour, S., & Gohari, A. (2015). Recovery from random samples in a big data set. IEEE Commun. Lett., 19, 1929-1932.

Molinari, C. (2012). No one size fits all strategy for big data, says IBM. Retrieved June 12, 2019, from http://www.bnamericas.com/news/technology/no-one-sizefits-all-strategy-for-big-data-says- ibm

MongoDB. (2016). Big data explained. Retrieved June 12, 2019, from https://www.mongodb.com/big-data-explained

Monteleoni, C., Schmidt, G. A., Saroha, S., & Asplund, E. (2011). Tracking climate models. Statistical Analysis and Data Mining, 4(4), 72-392.

Morente-Molinera, J. A., Perez, I. J., Urena, M. R., & Herrera-Viedma, E. (2016). Creating knowledge databases for storing and sharing people knowledge automati-cally using group decision making and fuzzy ontologies. Information Science, 328, 418-434.

Moritz, B., & Zimmermann, T. (2014). Deep conditional portfolio sorts: The relation between past and future stock returns. Working paper, LMU Munich and Harvard University.

Muhlenhoff, J. (2015). Mixed Methods and The Unknown Unknowns of UX: How might we marry quantitative and qualitative methods to see the big picture? Retrieved June 12, 2019, from https://www.slideshare.net/judithm/mixed-methods-and-the-unknown-unknowns-of-ux-uxce15

Najafabadi, M., Villanustre, F., Khoshgoftaar, T., Seliya, N., Wald, R., & Muharemagic, E. (2015). Deep learning applications and challenges in big data analytics. Journal of Big Data, SpringerOpen, 2(1). doi:10.1186/s40537-014-0007-7

Nedjah, N., Silva, F. P., Sá, A. O., Mourelle, L. M., & Bonilla, D. A. (2016). A massively parallel pipelined reconfigurable design for M-PLN based neural networks for efficient image classification. Neurocomputing, 183, 39-55.

Needham, J. (2013). Disruptive possibilities: How big data changes everything. O’Reilly Media. Retrieved June 12, 2019, from http://chimera.labs.oreilly.com/books/1234000000914/index.html

Neely, C., & Sarno, L. (2002). How well do monetary fundamentals forecast exchange rates? Federal Reserve Bank of St. Louis Working Paper Series: 2002-2007.

Njuguna, C. P. (2017). Constructing spatiotemporal poverty indices from big data. Journal of Business Research, Elsevier, 10.

Nymand-Andersen, P. (2016). Big data: The hunt for timely insights and decision certainty. IFC Working Papers, Bank for International Settlements, 14. Retrieved from www.bis.org

O’Connor, L. (2007). Data quality management and financial services. Proceedings of the MIT 2007 Information Quality Industry Symposium. Informatica. Retrieved June 12, 2019, from http://mitiq.mit.edu/IQIS/Documents/CDOIQS_200777/Papers/01_59_4E.pdf

O’Hara, M. (2015, May). High frequency market microstructure. Journal of Financial Economics, 11(2), 257-270.

Objectivity. (2015). Hard data vs. soft data. Retrieved June 12, 2019, from http://www.objectivity.com/hard-datavs-soft-data/

Orphanides, A. (2001). Monetary policy rules based on real-time data. American Economic Review, 50, 964–983.

Osadchy, M., LeCun, Y., & Miller, M. (2013). Synergistic face detection and pose estimation with energybased models. Journal of Machine Learning Research, 8, 1197–1215.

Osborne, J. W. (2012). Best practices in data cleaning: A complete guide to everything you need to do before and after collecting your data. SAGE Publications.

Ouysse, R. (2013). Forecasting using a Large Number of Predictors: Bayesian Model Averaging versus Principal Components Regression. Australian School of Business Research Paper, 2013 ECON 04, 1-34. Retrieved June 12, 2019, from http://research.economics.unsw.edu.au/RePEc/papers/2013-04.pdf

Partaourides, H., & Chatzis, S. P. (2017). Asymmetric deep generative models. Neurocomputing, 241(90). doi:10.1016/j.neucom.2017.02.028

Patterson, K. (2002). The data measurement process for UK GNP: stochastic trends, long memory and unit roots. Journal of Forecasting, 21, 245-264.

Pébay, P., Thompson, D., Bennett, J., & Mascarenhas, A. (2011). Design and performance of a scalable, parallel statistics toolkit. Proceedings of 2011 IEEE International Symposium on Parallel and Distributed Processing Workshops and Phd Forum (IPDPSW) (pp. 1475-1484).

Perlich, C., Provost, F., & Simonoff, J. S. (2003). Tree induction vs. logistic regression: A learning-curve analysis. Journal of Machine Learning Research, 4, 211-255.

Pipino, L. L., Lee, Y. W., & Wang, R. Y. (2002). Data quality assessment. Communications of the ACM, 45(4), 211-218.

Press, G. (2013). A very short history of big data. Retrieved June 12, 2019, from http://www.forbes.com/sites/gilpress/2013/05/09/a-very-short-history-of-big-data/2/

Rahm, E., & Do, H. H. (2000). Data cleaning: Problems and current approaches. IEEE Data Engineering Bulletin, 23(4), 3-13.

Ravi, K., & Ravi, V. (2015). A survey on opinion mining and sentiment analysis: tasks, approaches and applications. Knowledge Based System, 89, 14-46.

Rey, T., & Wells, C. (2013). Integrating Data Mining and Forecasting. OR/MS Today, 39(6). Retrieved June 12, 2019, from https://www.informs.org/ORMS-Today/PublicArticles/December-Volume-39Number-6/Integrating-data-mining-and-forecasting

Richards, N. M., & King, J. H. (2013). Three paradoxes of big data. Stanf Law Rev Online, 66(41), 41–46.

Sahimi, M., & Hamzehpour, H. (2010). Efficient computational strategies for solving global optimization problems. Computer Science Engineering, 12, 74-83.

Sala-i-Martin, X. X. (1997). I just ran two million regressions. American Economic Review, 87(2), 178-183.

Sarmad, Z., Bazargan, A., & Hejazi, E. (1998). Research methodology in behavioral science. Tehran: Aagaah.

Scheutz, M., & Mayer, T. (2016). Combining agent-based modeling with big data methods to support architectural and urban design. Springer International Publishing Switzerland, 18.

Schumacher, C. (2014). Midas and bridge equations. Deutsche Bundesbank.

Sermpinis, G., Theofilatos, K., Karathanasopoulos, A., Georgopoulos, E. F., & Dunis, C. (2013). Forecasting foreign exchange rates with adaptive neural networks using radial-basis functions and particle swarm optimization. European Journal of Operational Research, 225(3), 528–540.

Shi, Y. (2014). Big data: History, current status, and challenges going forward. The Bridge, The US National Academy of Engineering, 44(4), 6-11.

Sicular, S. (2016). Solution path: Implementing big data for analytics. Gartner, 35.

Silver, N. (2013). The signal and the noise: The art and science of prediction. Australia: Penguin Books.

Simonson, E. A. (2014). Analytics in banking. Everest Group Research, 13.

Soto, V., Frias-Martinez, V., Virseda, J., & Frias-Martinez, E. (2011). Prediction of socioeconomic levels using cell phone records. 19th International Conference on User Modeling, Adaption and Personalization. 6787 LNCS, pp. 377 –388. 0302-9743. doi:10.1007/978-3-642-22362-4_35

Srinivasan, S. (2016). using big data to detect financial fraud aided by fintech methods. Working paper, Texas Southern University.

Staff, C. (2014). Visualizations make big data meaningful. Commun. ACM, 19-21.

Stark, T., & Croushore, D. (2002). Forecasting with a real-time data set for macroeconomists. Journal of Macroeconomics, 507-531.

Stevenson, B. (2008). The Internet and job search. NBER Working Paper 13886.

Strobach, E., & Bel, G. (2015). Improvement of climate predictions and reduction of their uncertainties using learning algorithms. Atmospheric Chemistry and Physics, 15(15), 8631–8641.

Strobach, E., & Bel, G. (2016). Decadal climate predictions using sequential learning algorithms. Journal of Climate, 29(10), 3787–3809.

Stucke, G. (2016). Big data and competition policy. Oxford University Press, United Kingdom.

Sukittanon, S., Surendran, A. C., Platt, J. C., & Burges, C. J. (2004). Convolutional networks for speech detection. Interspeech, 1077-1080.

Takeuchi, L., & Lee, Y. -Y. (2013). Applying deep learning to enhance momentum trading strategies in stocks. Working paper, Stanford University.

Taylor, L., Cowls, J., Schroeder, R., & Meyer, E. T. (2014). Big data and positive change in the developing world. Policy & Internet, 6(4), 418–444.

Taylor, L., Schroeder, R., & Meyer, E. (2014). Emerging practices and perspectives on Big Data analysis in economics: Bigger and better or more of the same? Big Data & Society. Retrieved June 12, 2019, from http://bds.sagepub.com/content/1/2/2053951714536877.full

Tekmedash, M. G., Tizro, A. T., & Abyane, H. Z. (2015). Agent based modeling framework in simulation of stakeholder's behavior for managing water resource. Journal of Water and Sustainable Development, 2(1), 87-94.

Thiemann, P. G. (2016). Big data: Bringing competition policy to the digital era. OEDC - Organisation for Economic Co-operation and Development, 40.

Thinyane, H., & Millin, J. (2011). An investigation into the use of intelligent systems for currency trading. Computational Economics, 37(4), 363-374.

Thompson, D., Levine, J. A., Bennett, J. C., Bremer, P. -T., Gyulassy, A., Pascucci, V., & Pébay, P. P. (2011). Analysis of large-scale scalar data using hixels. Proceedings of 2011 IEEE Symposium on Large Data Analysis and Visualization (LDAV), (pp. 23-30).

Thorsrud, L. A. (2016). Nowcasting using news topics. Big Data versus big bank. Norges Bank Research, 62.

Tiffin, A. (2016). Seeing in the dark: A machine-learning approach to nowcasting in Lebanon. IMF Working Paper, 20.

Tissot, B., Hülagü, T., Nymand-Andersen, P., & Suarez, L. C. (2015). Central banks’ use of and interest in big data. Irving Fisher Committee on Central Bank Statistics, 29.

Tuhkuri, J. (2014). Big Data: Google Searches Predict Unemployment in Finland. ETLA Reports, 31.

Uguz, H. (2011). A two-stage feature selection method for text categorization by using information gain, principal component analysis and genetic algorithm. Knowledge Based System, 24, 1024-1032.

Varian, H. (2018). Retrieved June 12, 2019, from https://www.youtube.com/watch?v=aUl OVgT Y

Varian, H. R. (2014). Big Data: New Tricks for Econometrics. Journal of Economic Perspectives, 28(2), 3-28.

Wang, H., Xu, Z., Fujita, H., & Liu, S. (2016). Towards felicitous decision making: An overview on challenges and trends of Big Data. Information Sciences, Science Direct, Elsevier, 19.

Wang, R., He, Y. -L., Chow, C. -Y., Ou, F. -F., & Zhang, J. (2015). Learning ELM-Tree from big data based on uncertainty reduction. Fuzzy Sets System, 258, 79-100.

West, G. (2013). Big data needs a big theory to go with it. Retrieved June 12, 2019, from http://www.scientificamerican.com/article/big-data-needs-big-theory/

Wong, W.-k., Shi, X. J., Yeung, D. Y., & Woo, W.-C. (2016). A deep-learning method for precipitation nowcasting. WMO WWRP 4th International Symposium on Nowcasting and Very-short-range Forecast 2016. Hong Kong.

Wu, L., & Brynjolfsson, E. (2015). The Future of Prediction: How Google Searches Foreshadow Housing Prices and Sales. (A. Goldfarb, S. Greenstein, & C. Tucker, Eds.) Economic Analysis of the Digital Economy, 89–118.

Wu, X., Fan, W., Peng, J., Zhang, K., & Yu, Y. (2015). Iterative sampling based frequent itemset mining for big data. Int. J. Mach. Learn. Cybern., 6, 875-882.

Wu, X., Zhu, X., & Wu, G.-Q. (2014). Data mining with big data. IEEE Transactions on Knowledge and Data Engineering, 26, 97–107.

Yan, J., Liu, N., Yan, S., Yang, Q., Fan, W., Wei, W., & Chen, Z. (2011). Trace-oriented feature analysis for large-scale text data dimension reduction. IEEE Trans. Knowledge Data Engineering, 23, 1103-1117.

 

Zhai, Y., Ong, Y. S., & Tsang, I. W. (2014). The emerging "big dimensionality". IEEE Comput. Intell. Mag. 9, 14-26.

Zhang, W., Han, L., Sun, J., Guo, H., & Dai, J. (2017). Application of Multi-channel 3D-cube Successive Convolution Network for Convective Storm Nowcasting.

Zhou, G., Sohn, K., & Lee, H. (2012). Online incremental feature learning with denoising autoencoders. International Conference on Artificial Intelligence and Statistics (pp. 1453-1461). JMLR.org.