Designing a Predictive Analytics for the Formulation of Intelligent Decision Making Policies for VIP Customers Investing in the Bank

Document Type: Research Paper

Author

Assistant Prof. of Industrial Management, Faculty of Management and Accounting, Allameh Tabataba’i University, Tehran, Iran

Abstract

Special, privileged or VIP customers are of great significance to the banks since they continuously and broadly invest in deposits and remain loyal to the banks. This loyalty is dependent on the broad and specific services they receive, deposit interests, and the tuned regulatory actions that banks take for according to the grade of special customers and their propensity to risk. In the current research, a dataset of two thousand ordinary and special privileged customers were collected according to their demographics, accounts information, and level of investment in the bank. The grade of special customer and their propensity to taking risks are also determined by the experts of the bank. Afterwards, a range of learning algorithms are applied for designing and validating classification and prediction methods on special customers’ grades and their propensity to risk. Final results are then analyzed and prepared as a set of intelligent and improvable rules that assist the bank managers in formulating interactive and predictive decision making policies from the initiation of the customer relationship with the bank.

Keywords

Main Subjects


اسماعیل‎نیا، م. (1391). ردپای بانکداری اختصاصی و شرکتی در برنامه‎های سال 91 بانک‎های خصوصی، نشریۀ تبلیغات بازرگانی، (51 و 52)، 29-26.

بازرگان، ع.، سرمد، ز. و حجازی، ا. (1386). روشهای تحقیق در علوم رفتاری. چاپ سیزدهم، تهران: انتشارات آگاه.

توتونچیان، ا. (1375). اقتصاد پول و بانکداری. تهران: مؤسسۀ تحقیقات پولی و بانکی.

دلاور، م. (1392). روش تحقیق در روان‌شناسی و علوم تربیتی، انتشارات دانشگاه پیام‌نور.

رضایی‎نور، ج.، شیخ بهایی، ج. (1396). کاربردهای داده‎کاوی متنی در حوزة مدیریت دانش زنجیرة خدمات دولت الکترونیکی. نشریۀ مدیریت فناوری اطلاعات، 9 (1)، 66-39.

رئیسی وانانی، ا.، گنجعلی خان حاکمی، ف. (1394). طراحی سیستم استنتاج فازی ـ عصبی انطباقی برای ارزیابی استقرار سیستم هوشمندی کسب‎وکار در صنعت تولید نرم‎افزار. نشریۀ مدیریت فناوری اطلاعات، 9 (1)، 104-85.

شفیعی رود پشتی، م.، حکاکی، س.م.، جلالی، م.، نوری، ا. (1393). تحلیل بر وضعیت بانکداری اختصاصی. فصلنامۀ پژوهش و سیاستهای اقتصادی، 22(70)، 138- 119.

شهرابی ج.، شجاعی، ع.ذ. (1390). دادهکاوی پیشرفته: مفاهیم و الگوریتمها. تهران: جهاد دانشگاهی واحد صنعتی امیرکبیر.

طاهری، ن. (1391). کلیاتی از بانکداری اختصاصی (Private Banking). نشریۀ بانک و اقتصاد، 119، 40-36.  

غلامپور فرد، م.م.، مختاری، م.، رضوی خسروانی، آ. (1391). بانکداری به میل مشتری، نگاهی به بانکداری اختصاصی در جهان. فصلنامۀ تازههای اقتصاد، 138، 151-149.

منصف، ع.، منصوری، ن. (1389). بررسی عوامل مؤثر بر حجم سپرده‎های بانکی (با تأکید بر نرخ سود اوراق مشارکت: 1387-1367)، مجلۀ دانش و توسعه، 17 (34)، 90-69.

ناظمی یگانه، ف. (1389). بانکداری اختصاصی، حلقۀ گمشدۀ نظام بانکی کشور. فصلنامۀ تخصصی بانک صادرات، 11(54)، 50-47.

Ansari, A. & Riasi, A. (2016). Modelling And evaluating customer loyalty using neural networks: Evidence from startup insurance companies. Future Business Journal, 2(1), 15-30.

Bazargan, A., Sarmad, Z. & Hejazi, A. (2007). Research Methods in Behvioral Sciences (13th Edition). Tehran: Agah Publications. (in Persian)

Carrasco, I. G., Palacios, R. C., Cuadrado, J. L., Crespo, A. G. & B. R. Mezcua (2012). PB-ADVISOR: A Private Banking Multi-Investment Portfolio Advisor. Information Sciences, 206, 63–82.

Delavar, M. (2013). Research Method in Psychology and Educational Sciences. Payam-e-Noor University Publication. (in Persian)

Dichev, C. & Dicheva, D. (2017). Towards Data Science Literacy, Procedia Computer Science 108C. International Conference on Computational Science, 2151–2160.

Dömötör, B. (2011). A kockázat megjelenése a származtatott pénzügyi termékekben (The risk appearing in financial derivatives). Credit Institution Review, 10(4), 360‒369.

Dömötör, B. (2013). Modelling optimal Hedge Ratio in the Presence of Funding Risk. 27th European conference on Modelling and simulation, 27–30.

Esmailnia, M. (2012). The trace of private and corporate banking in the plans of private banks in 1391. Business Marketing Journal, (51- 52), 26-29. (in Persian)

Gallan, A.S., Jarvis, C.B., Brown, S.W. & Bitner, M.J. (2013). Customer positivity and participation in services: An empirical test in a healthcare context. Journal of the Academy of Marketing Science, 41(3), 338–356.

Gholampour Fard, M.M., Mokhtari, M. & Razavi Khosravani, A. (2012). Customer-Oriented Banking: A look on Private Banking in the World. Economic News Journal, 138, 149-151. (in Persian)

Han, J., Kamber, M. & Pei, J. (2011). Data Mining: Concepts and Techniques (Third Edition). SanFrancisco. Morgan Kaufmann Publishers, CA, USA.

Han, J., Kamber, M. (2006). Data Mining concepts and techniques. Second Edition, Morgan Kaufmann.

Kirakosyan, K. & Dănăiaţă, D. (2014). Communication management in electronic banking. Better communication for better relationship. Procedia-Social and Behavioral Sciences, 124(2014), 361–370.

Larose, D. (2014). Discovering Knowledge in Data: An Introduction to Data Mining. 2nd Edition. John Wiley-Interscience.

Li, X. & Petrick, J.F. (2008). Reexamining the dimensionality of brand loyalty: A case of the cruise industry. Journal of Travel Tourism Marketing, 25(1), 68–85.

Liao, S.H., Chu, P.H. & Hsiao, P.Y. (2012). Data mining techniques and applications – A decade review from 2000 to 2011. Expert Systems with Applications, 39(12), 11303-11311.

Liu, C. M. (2001), An Assessment of Banking Operation Strategies of Private Banking Institutions in the Philippines. Asia Pacific Journal of Marketing & Logistics, 13(1), 57-71.

Markov, Z. & Rusell, I.) 2009. (An Introduction to the WEKA data mining system. Proceedings of the 11th annual SIGCSE conference on Innovation and technology in computer science education, 367-368.

Monsef, A. & Mansouri, N. (2010). Evaluation of Influential Factors on the Volume of Bank Deposits (With Respect to the Profit Rate of Bonds: 1367-1387). Knowledge and Development Journal, 17(34), 69-90. (in Persian)

Nazemi Yeganeh, F. (2010). Private Banking: Missing Ring of Banking System in the Country. Journal of Saderat Bank, 11(54), 47-50. (in Persian)

Raeesi Vanani, I. & Ganjalikhan Hakemi, F. (2015). Design of Adaptive Neuro-Fuzzy Inference System for Evaluating the Implementation of Business Intelligence System in Software Development Industry. Information Technology Management Journal, 9(1), 85-104. (in Persian)

Reydet, S. & Carsana, L. (2017). The effect of digital design in retail banking on customers’ commitment and loyalty: The mediating role of positive affect. Journal of Retailing and Consumer Services, 37, 132-138.

Rezaee Noor, J. & Sheikh Bahayi, J. (2017). Applications of Textual Data Mining in Knowledge Management Domain of e-Government Service Chain. Information Technology Management Journal, 7(1), 39-66. (in Persian)

Shafiee Roodposhti, M., Hakaki, S.M., Jalali, M. & Noori, A. (2014). Analysis of Private Banking Conditions. Journal of Economic Research and Policies, 22(70), 119-138. (in Persian)

Shahrabi, J. & Shojaee, A.Z. (2011). Advanced Data Mining, Concepts and Algorithms. Tehran: University of Amirkabir, Jahad Daneshgahi Publication. (in Persian)

Straker, K., Wrigley, C. & Rosemann, M. (2015). The role of design in the future of digital channels: conceptual insights and future research directions. Journal of Retailing and Consumer Services, 26, 133–140.

Straker, K., Wrigley, C. (2016). Translating emotional insights into digital channel designs: opportunities to enhance the airport experience. Journal of Hospitality and Tourism Technology, 7 (2), 135–157.

Taheri, N. (2012). Summaries of Private Banking. Economy and Bank Journal, 119, 36-40. (in Persian)

Tootoonchian, A. (1996). Money and Banking Economy. Tehran: Banking and Money Research Institute. (in Persian)

Witten, I.H. & Frank, E. (2011). Data Mining: Practical machine Learning tools and techniques. (3 ed.). Elsevier.

Wrigley, C. (2013). Design dialogue: the visceral hedonic rhetoric framework. Design Issues, 29 (2), 82–95.