A New Mechanism to Improve the Detection Rate of Shilling Attacks in the Recommender Systems

Document Type : Research Paper


1 MSc. Student, Faculty of Computer and Information Technology Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran

2 Assistant Prof., Faculty of Computer and Information Technology Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran


Recommender systems are widely used, in social networks and online stores, to overcome the problems caused by the large amount of information. Most of these systems use a collaborative filtering method to generate recommendations to the users. But, as in this method users’ feedback is considered for recommendations, it can be significantly erroneous by the malicious people. In other words, there may be some users who open fake profiles and vote one-sided or biased in the system that may cause disturbance in providing proper recommendations to other users. This kind of damage is said to be shiling attacks. If the attackers succeed, the user's trust in the recommender systems will reduce. In recent years, efficient attack detection algorithms have been proposed, but each has its own limitations. In this paper, we use profile-based and item-based algorithms to provide a new mechanism to significantly reduce the detection error for shilling attacks.


Main Subjects

کریمی علویجه، م.، عسکری، ش. و پرسته, س. (۱۳۹۴). فروشگاه اینترنتی هوشمند: سیستم پیشنهاددهندۀ مبتنی بر تحلیل رفتار کاربران. فصلنامۀ علمی ـ پژوهشی مدیریت فناوری اطلاعات، ۷(۲)، ۳۸۵-۴۰۶.
مطهری نژاد, م س.، ذوالفقارزاده, م. م.، خدنگی, ا. و سعدآبادی، ع. ا. (۱۳۹۵). طراحی مدلی برای بهبود سیستم‌های پیشنهاددهندۀ بانکی بر اساس پیش‌بینی علایق مشتریان: کاربرد روش‎های داده‌کاوی.  فصلنامۀ علمی ـ پژوهشی مدیریت فناوری اطلاعات، ۸(۲)، ۳۱۴-۳۹۳.
Bhaumik, R., Mobasher, B. & Burke, R. (2011). A clustering approach to unsupervised attack detection in collaborative recommender systems. In Proceedings of the 7th IEEE international conference on data mining. Las Vegas, NV, USA. 181-187.
Bhaumik, R., Williams, C., Mobasher, B. & Burke, R. (2006). Securing collaborative filtering against malicious attacks through anomaly detection. In Proceedings of the 4th Workshop on Intelligent Techniques for Web Personalization., Boston.
Burke, R., Mobasher, B., Williams, C., & Bhaumik, R. (2006).Classification features for attack detection in collaborative recommender systems. August, In Proceedings of the 12th ACM international conference on Knowledge discovery and data mining.
Cheng Z, Hurley N. (2009). Effective diverse and obfuscated attacks on model-based recommender systems. 3rd ACM Conf. Recommender system.
Chirita, P. A., Nejdl, W. & Zamfir, C.  (2005). Preventing shilling attacks in online recommender systems. November, 7th annual ACM international workshop on web information and data management.
Chung, C. Y., Hsu, P. Y. & Huang, S. H. (2013). βP: A novel approach to filter out malicious rating profiles from recommender systems. Decision Support Systems, 55(1), 314-325.
Noh, G. Kang, Y. Oh, H. Kim,C. (2014). Robust Sybil attack defense with information level in online Recommender Systems. Expert Systems with Applications, 41(4), 1781-1791.
Gao, M., Tian, R., Wen, J., Xiong, Q., Ling, B. & Yang, L. (2015).  Item anomaly detection based on dynamic partition for time series in recommender systems. PloS one, 10(8).
Gunes, I., & Polat, H. (2016). Detecting shilling attacks in private environments. Information Retrieval Journal, 19(6), 547-572.
Gunes, I., Kaleli, C. Bilge, A. & Polat, H. (2014). Shilling attacks against recommender systems: a comprehensive survey. Artificial Intelligence Review, 42 (4), 1-33.
Isinkaye, F. O., Y. O. Folajimi, and B. A. Ojokoh. (2015). Recommendation systems: Principles, methods and evaluation. Egyptian Informatics Journal, 16(3), 261-273.
Karimi, M. R. & Askari, SH. & Paraste, S. (2015). Intelligent Online Store: User Behavior Analysis based Recommender System. Journal of Information Technology Management, 7(2), 385-406. (in Persian)
Mehta, B, Hofmann, T. (2008). A survey of attack-resistant collaborative filtering algorithms. IEEE Data Eng, 31(2), 14-22.
Motaharinejad, M. S. & Zolfagharzadeh, M. M. & Khadangi, E. & Sadabadi, A.A. (2016). Designing a Model for Improving Banking Recommender Systems Based on Predicting Customers’ Interests: Application of Data Mining Techniques. Journal of Information Technology Management, 8(2), 393-314. (in Persian)
Sun, Z., Han, L., Huang, W., Wang, X., Zeng, X., Wang, M. & Yan, H. (2015). Recommender systems based on social networks. Journal of Systems and Software, 99, 109-119.
Xia, H., Fang, B., Gao, M., Ma, H., Tang, Y. & Wen, J. (2015). A novel item anomaly detection approach against shilling attacks in collaborative recommendation systems using the dynamic time interval segmentation technique. Information Sciences, 306, 150-165.
Zhang, F. & Zhou, Q. (2014). HHT–SVM: An online method for detecting profile injection attacks in collaborative recommender systems. Knowledge-Based Systems, 65, 96-105.
Zhang, F. (2015). Robust Analysis of Network based Recommendation Algorithms against Shilling Attacks. International Journal of Security & Its Applications, 9(3), 13-24.
Zhang, X.-L., Lee, T., Pitsilis, G. (2013). Securing recommender systems against shilling attacks using social-based clustering. Journal of Computer Science and Technology, 28(4), 616–624.
Zhao, Z. D. & Shang, M. S. (2010). User-based collaborative-filtering recommendation algorithms on hadoop. In Knowledge Discovery and Data Mining. Third International Conference on IEEE. 478-481.
Zhou, W., Wen, J., Koh, Y. S., Xiong, Q., Gao, M., Dobbie, G., & Alam, S. (2015). Shilling attacks detection in recommender systems based on target item analysis. PloS one, 10(7).