Aamir, M., Rizvi, S. S. H., Hashmani, M. A., Zubair, M., & Ahmad, J. (2021). Machine learning classification of port scanning and DDoS attacks: A comparative analysis. Mehran University Research Journal of Engineering & Technology, 40(1), 215-229.
Bouyeddou, B., Harrou, F., Sun, Y., & Kadri, B. (2018, May). Detection of smurf flooding attacks using a Kullback-Leibler-based scheme. In 2018 4th International Conference on Computer and Technology Applications (ICCTA) (pp. 11-15). IEEE.
Chaganti, R., Boppana, R. V., Ravi, V., Munir, K., Almutairi, M., Rustam, F., ... & Ashraf, I. (2022). A comprehensive review of denial of service attacks in the blockchain ecosystem and open challenges. IEEE Access, 10, 96538-96555.
Djuitcheu, H., Debes, M., Aumüller, M., & Seitz, J. (2022, March). Recent review of distributed denial of service attacks in the Internet of Things. In 2022 5th conference on cloud and internet of things (CIoT) (pp. 32-39). IEEE.
El Rab, M. G. (2008). Evaluation des systèmes de détection d'intrusion (Doctoral dissertation, Université Paul Sabatier-Toulouse III).
Hasan, M. K., Habib, A. A., Islam, S., Safie, N., Abdullah, S. N. H. S., & Pandey, B. (2023). DDoS: Distributed denial of service attack in communication standard vulnerabilities in smart grid applications and cybersecurity with recent developments. Energy Reports, 9, 1318-1326.
Khan, N., Ahmad, K., Tamimi, A. A., Alani, M. M., Bermak, A., & Khalil, I. (2024). Explainable AI-based Intrusion Detection System for Industry 5.0: An Overview of the Literature, associated Challenges, the existing Solutions, and Potential Research Directions. arXiv preprint arXiv:2408.03335.
Kumar, A., Gahlawat, R., Thakur, A., & Pahuja, D. (2025). A Hybrid Deep Learning Framework for IoT Network Intrusion Detection System.
Labonne, M. (2020). Anomaly-based network intrusion detection using machine learning (Doctoral dissertation, Institut Polytechnique de Paris).
Lindstedt, H. (2022). Methods for Network Intrusion Detection: Evaluating Rule-Based Methods and Machine Learning Models, on the CIC-IDS2017 Dataset.
Najafabadi, M. M., Khoshgoftaar, T. M., Kemp, C., Seliya, N., & Zuech, R. (2014, November). Machine Learning for detecting brute force attacks at the network level. In 2014 IEEE International Conference on Bioinformatics and Bioengineering (pp. 379-385). IEEE.
Neupane, S., Ables, J., Anderson, W., Mittal, S., Rahimi, S., Banicescu, I., & Seale, M. (2022). Explainable intrusion detection systems (x-ids): A survey of current methods, challenges, and opportunities. IEEE Access, 10, 112392-112415.
Revathy, G., Rajendran, V., Sathish Kumar, P., Vinuharini, S., & Roopa, G. N. (2022, May). Smurf attack using a hybrid machine learning technique. In AIP Conference Proceedings (Vol. 2463, No. 1, p. 020015). AIP Publishing LLC.
Roy, P., Kumar, R., & Rani, P. (2022, May). SQL injection attack detection by a machine learning classifier. In 2022 International Conference on Applied Artificial Intelligence and Computing (ICAAIC) (pp. 394-400). IEEE.
Rustam, F., Mushtaq, M. F., Hamza, A., Farooq, M. S., Jurcut, A. D., & Ashraf, I. (2022). Denial of service attack classification using machine learning with multi-features. Electronics, 11(22), 3817.
Wang, M., Yang, N., Gunasinghe, D. H., & Weng, N. (2023). On the robustness of ML-based network intrusion detection systems: An adversarial and distribution shift perspective. Computers, 12(10), 209.
Zeebaree, S. R., Jacksi, K., & Zebari, R. R. (2020). Impact analysis of SYN flood DDoS attack on HAProxy and NLB cluster-based web servers. Indones. J. Electr. Eng. Comput. Sci, 19(1), 510-517.