Process Mining in Banking Logistics: From Identification to Improvement

Document Type : Research Paper

Authors

1 M.A. of Industrial Management, Faculty of Management and Accounting, Allameh Tabatabai University, Tehran, Iran.

2 Prof., Department of Industrial Management, Faculty of Management and Accounting, Allameh Tabatabai University, Tehran, Iran.

3 Associate Prof., Department of Industrial Management, Faculty of Management and Accounting, Allameh Tabatabai University, Tehran, Iran.

10.22059/jitm.2025.385467.3895

Abstract

This paper investigates the application of Process Mining (PM) techniques to redesign and optimize logistics processes within an Iranian bank. The primary aim is to identify inefficiencies, bottlenecks, and process deviations using real-world event log data and to provide data-driven recommendations for process improvement. Data comprising 35,642 event reports related to 16,490 logistics process workflows were extracted from the bank's automation and correspondence systems over six months in 2022. Disco 2.14 was used for data analysis. Results revealed that only 3.6% of product demands conformed to the predefined process model, indicating high process variability and improvement potential. Analyses also showed the average process duration was 5.7 days, exceeding the bank's internal benchmark (three to five days), and the process fulfillment ratio was 83.3%, falling short of the desired target of 95%. Key inefficiencies identified included excessive waiting times for unfulfilled demands (averaging 315.7 days) and bottlenecks in the "Registering the purchase invoice" and "Registering the warehouse receipt" activities. Drawing on these findings, suggestions were proposed to optimize the procurement process, automate manual efforts, and improve alignment with the defined process model. This study contributes to the existing knowledge by providing an empirical case study of PM application in a specific context within the banking industry. The findings underscore the importance of monitoring and managing process conformance, as well as addressing excessive waiting times to improve customer satisfaction and operational efficiency. Limitations of this study include reliance on data from a single bank and a focus on logistics processes. Future research could focus on investigating root causes of process deviations, using PM for predictive analysis, and evaluating the impact of process improvements on key performance indicators.

Keywords

Main Subjects


Abrehdari, S. H. (2025). Leveraging the Process Mining Technique to Optimize Data Preparation Time in a Database Used as an Automated Data Delivery Center. MethodsX, 103428.
Akhramovich, K., Serral, E., & Cetina, C. (2024). A systematic literature review on the application of process mining to Industry 4.0. Knowledge and Information Systems66(5), 2699-2746.
Battilani, C., Galli, G., Arecco, S., Casarino, B., Granero, A., Lavagna, K., ... & Damiani, L. (2022). Business process re-engineering in public administration: The case study of Western Ligurian Sea Port Authority. Sustainable Futures4, 100065.
Brandl, F. J., Ridolfi, K. S., & Reinhart, G. (2020). Can we adopt the Toyota kata for the (re-) design of business processes in the complex environment of a manufacturing company?. Procedia CIRP93, 838-843. https://doi.org/10.1016/j.procir.2020.03.086
Caron, J. R., Jarvenpaa, S. L., & Stoddard, D. B. (1994). Business Reengineering at CIGNA Corporation: Experiences and Lessons Learned from the First Five Years. MIS Quarterly18(3), 233–250. https://doi.org/10.2307/249617
Caruelle, D., Lervik-Olsen, L., & Gustafsson, A. (2023). The clock is ticking—Or is it? Customer satisfaction response to waiting shorter vs. longer than expected during a service encounter. Journal of Retailing99(2), 247-264.
Çelik, U., Akçetin, E., & Yaldır, A. (2016). Analysis of Volvo IT’s Closed Problem Management Processes By Using Process Mining Software ProM and Disco. Alphanumeric Journal4(2), 171-182.
Choueiri, A. C., & Santos, E. A. P. (2021). Discovery of path-attribute dependency in manufacturing environments: A process mining approach. Journal of Manufacturing Systems61, 54-65.
Davenport, T. H., & Short, J. E. (1990). The new industrial engineering: information technology and business process redesign. Sloan Management Review, 31(4), 11-27.
der Aalst, V., & Mining, W. P. (2011). Discovery, Conformance and Enhancement of Business Processes. Media; Springer: Berlin/Heidelberg, Germany, 136. https://doi.org/10.1007/978-3-642-19345-3
de Boer, T. R., Arntzen, R. J., Bekker, R., Buurman, B. M., Willems, H. C., & van der Mei, R. D. (2025). Process mining on national health care data for the discovery of patient journeys of older adults. Journal of the American Medical Directors Association26(1), 105333.
De Roock, E., & Martin, N. (2022). Process mining in healthcare–An updated perspective on the state of the art. Journal of biomedical informatics127, 103995.
De Weerdt, J., De Backer, M., Vanthienen, J., & Baesens, B. (2012). A multi-dimensional quality assessment of state-of-the-art process discovery algorithms using real-life event logs. Information systems37(7), 654-676.
Dumas, M., Rosa,  M., Mendling, J., & Reijers, A. H. (2018). Fundamentals of business process management. Springer-Verlag.
Elzinga, D. J., Horak, T., Lee, C. Y., & Bruner, C. (1995). Business process management: survey and methodology. IEEE transactions on engineering management42(2), 119-128.
Esmail, F. S., Alsheref, F. K., & Aboutabl, A. E. (2023). Review of loan fraud detection process in the banking sector using data mining techniques. International journal of electrical and computer engineering systems14(2), 229-239.
Gažová, A., Papulová, Z., & Smolka, D. (2022). Effect of business process management on level of automation and technologies connected to industry 4.0. Procedia Computer Science200, 1498-1507.
Ge, J., Sigsgaard, K. W., Mortensen, N. H., Hansen, K. B., & Agergaard, J. K. (2023, June). Structured process mining in maintenance performance analysis: a case study in the offshore oil and gas industry. In 2023 9th International Symposium on System Security, Safety, and Reliability (ISSSR) (pp. 306-313). IEEE.
Günther, C. W., & Van Der Aalst, W. M. (2007, September). Fuzzy mining–adaptive process simplification based on multi-perspective metrics. In International conference on business process management (pp. 328-343). Springer Berlin Heidelberg.
Hammer, M. (1990). Reengineering work. Harvard business review68(4), 104-112.
Huda, S., Shidik, G. F., Rafrastara, F. A., & Abdollah, M. (2025). Hybrid Process Mining and Fuzzy Relation Weighting for Process Violation Weighting in Fraud Detection. International Journal of Intelligent Engineering & Systems18(5).
Jokonowo, B., Claes, J., Sarno, R., & Rochimah, S. (2018). Process mining in supply chains: a systematic literature review. International Journal of Electrical and Computer Engineering8(6), 4626-4636.
Karbasi, A., Mahdikhani, M., Gerschberger, M., & Aghaie, S. (2024). Longitudinal analysis of production process variability: an organizational information processing theory perspective. Business Process Management Journal30(6), 1764-1782.
Kirchmer, M. (2017). High performance through business process management. West Chester: Springer.
Lambert, D. M., Stock, J. R., & Ellram, L. M. (1998). Fundamentals of logistics management. McGraw-Hill/Irwin.
Leno, V., Polyvyanyy, A., Dumas, M., La Rosa, M., & Maggi, F. M. (2021). Robotic process mining: vision and challenges. Business and Information Systems Engineering63(3), 301-314.
Lorenz, R., Senoner, J., Sihn, W., & Netland, T. (2021). Using process mining to improve productivity in make-to-stock manufacturing. International Journal of Production Research59(16), 4869-4880.
Li, Y., Ni, Z., & Xiao, B. (2025). Domain Knowledge-Enhanced Process Mining for Anomaly Detection in Commercial Bank Business Processes. Systems13(7), 545.
Munoz-Gama, J., Martin, N., Fernandez-Llatas, C., Johnson, O. A., Sepúlveda, M., Helm, E., ... & Zerbato, F. (2022). Process mining for healthcare: Characteristics and challenges. Journal of Biomedical Informatics127, 103994.
Nakhainejad, M. (2007). Reengineering processes with an emphasis on police. Police Human Development Monthly, 9-33.
Park, S., & Kang, Y. S. (2016). A study of process mining-based business process innovation. Procedia Computer Science91, 734-743.
Pereira, G. B., Santos, E. A. P., & Maceno, M. M. C. (2020). Process mining project methodology in healthcare: a case study in a tertiary hospital. Network Modeling Analysis in Health Informatics and Bioinformatics9(1), 28. https://doi.org/10.1007/s13721-020-00227-w
Pérez-Castillo, R., Weber, B., Pinggera, J., Zugal, S., de Guzmán, I. G. R., & Piattini, M. (2011). Generating event logs from non-process-aware systems enabling business process mining. Enterprise Information Systems5(3), 301-335.
Reijers, H. A. (2021). Business Process Management: The evolution of a discipline. Computers in Industry126, 103404. https://doi.org/10.1016/j.compind.2021.103404
Rosemann, M., & vom Brocke, J. (2014). The six core elements of business process management. In Handbook on business process management 1: introduction, methods, and information systems (pp. 105-122). Springer Berlin Heidelberg.
Sarker, I. H. (2021). Data science and analytics: an overview from data-driven smart computing, decision-making and applications perspective. SN Computer Science2(5), 377.
Shams-Shemirani, S., Tavakkoli-Moghaddam, R., Amjadian, A., & Motamedi-Vafa, B. (2024). Simulation and process mining in a cross-docking system: a case study. International Journal of Production Research62(13), 4902-4925.
Steiner, F. (2019). Industry 4.0 and business process management. Tehnički glasnik13(4), 349-355.
Turner, C. J., Tiwari, A., Olaiya, R., & Xu, Y. (2012). Process mining: from theory to practice. Business process management journal18(3), 493-512.
van Beest, N., Groefsema, H., García-Bañuelos, L., & Aiello, M. (2019). Variability in business processes: Automatically obtaining a generic specification. Information Systems80, 36-55.
Vom Brocke, J., & Rosemann, M. (2010). Handbook on business process management (Vol. 2). Heidelberg: Springer.
Van Der Aalst, W. (2016). Data science in action. In Process mining: Data science in action (pp. 3-23). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-49851-4.
van der Aalst, W. M. (2021, September). Using free-choice nets for process mining and business process management. In 2021 16th Conference on Computer Science and Intelligence Systems (FedCSIS) (pp. 9-15). IEEE. http://dx.doi.org/10.15439/2021F002
Van der Aalst, W. M. (2022). Process mining: a 360 degree overview. In Process mining handbook (pp. 3-34). Cham: Springer International Publishing.
Wijnhoven, F., Hoffmann, P., Bemthuis, R., & Boksebeld, J. (2023). Using process mining for workarounds analysis in context: Learning from a small and medium-sized company case. International Journal of Information Management Data Insights3(1), 100163.