Agrawal, P., Abutarboush, H. F., Ganesh, T., & Mohamed, A. W. (2021). Metaheuristic algorithms on feature selection: A survey of one decade of research (2009-2019). Ieee Access, 9, 26766-26791.
Agrawal, K., & Bhatnagar, C. (2023). F-mim: Feature-based masking iterative method to generate the adversarial images against the face recognition systems. Journal of Information Technology Management, 15(Special Issue: EIntelligent and Security for Communication, Computing Application (ISCCA-2022)), 80-93.
Al-Tashi, Q., Abdulkadir, S. J., Rais, H. M., Mirjalili, S., & Alhussian, H. (2020). Approaches to multi-objective feature selection: a systematic literature review. IEEE Access, 8, 125076-125096.
Battiti, R. (1994). Using mutual information for selecting features in supervised neural net learning. IEEE Transactions on Neural Networks, 5(4), 537-550.
Caldeira, M., Martins, P., Costa, R. L. C., & Furtado, P. (2020). Image classification benchmark (ICB). Expert Systems with Applications, 142, 112998.
Charytanowicz, M., Niewczas, J., Kulczycki, P., Kowalski, P., & Lukasik, S., (2010). “Seeds [Dataset]”. UCI Machine Learning Repository. https://doi.org/10.24432/C5H30K.
Dhal, P., & Azad, C. (2022). A comprehensive survey on feature selection in the various fields of machine learning. Applied Intelligence, 52(4), 4543-4581.
Fan, F. L., Xiong, J., Li, M., & Wang, G. (2021). On interpretability of artificial neural networks: A survey. IEEE Transactions on Radiation and Plasma Medical Sciences, 5(6), 741-760.
Fatima, M., & Pasha, M. (2017). Survey of machine learning algorithms for disease diagnostic. Journal of Intelligent Learning Systems and Applications, 9(01), 1-16.
Gambella, C., Ghaddar, B., & Naoum-Sawaya, J. (2021). Optimization problems for machine learning: A survey. European Journal of Operational Research, 290(3), 807-828.
Heart Dataset, (2020). Heart Failure Clinical Records [Dataset], UCI Machine Learning Repository. https://doi.org/10.24432/C5Z89R.
Jha, K. K., & Dutta, H. S. (2019). Mutual information based hybrid model and deep learning for acute lymphocytic leukemia detection in single cell blood smear images. Computer methods and programs in biomedicine, 179, 104987.
Katoch, S., Chauhan, S. S., & Kumar, V., (2021). A review on genetic algorithm: past, present, and future. Multimedia tools and applications”, 80, 8091-8126.
Khan, A. H., Sarkar, S. S., Mali, K., & Sarkar, R. (2022). A genetic algorithm based feature selection approach for microstructural image classification. Experimental Techniques, 1-13.
Kwak, N., & Choi, C. H. (2002). Input feature selection for classification problems. IEEE transactions on neural networks, 13(1), 143-159.
Li, Z., Liu, F., Yang, W., Peng, S., & Zhou, J. (2021). A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems, 33(12), 6999-7019.
Panyadee, P., Balslev, H., Wangpakapattanawong, P., & Inta, A. (2019). Medicinal plants in homegardens of four ethnic groups in Thailand. Journal of ethnopharmacology, 239, 111927.
Sachar, S., & Kumar, A. (2021). Survey of feature extraction and classification techniques to identify plant through leaves. Expert Systems with Applications, 167, 114181.
Saranya, G., & Pravin, A. (2021). Feature selection techniques for disease diagnosis system: A survey. In Artificial Intelligence Techniques for Advanced Computing Applications: Proceedings of ICACT 2020 (pp. 249-258). Springer Singapore.
Singh, M. K., & Kumar, A. (2023). Cucumber leaf disease detection and classification using a deep convolutional neural network. Journal of Information Technology Management, 15(Special Issue: EIntelligent and Security for Communication, Computing Application (ISCCA-2022)), 94-110.
Singh, V., & Misra, A. K. (2015). Detection of unhealthy region of plant leaves using image processing and genetic algorithm. In 2015 International Conference on Advances in Computer Engineering and Applications (pp. 1028-1032). IEEE.
Sun, Y., Xue, B., Zhang, M., & Yen, G. G. (2019). Evolving deep convolutional neural networks for image classification. IEEE Transactions on Evolutionary Computation, 24(2), 394-407.
Tali, B. A., Khuroo, A. A., Ganie, A. H., & Nawchoo, I. A. (2019). Diversity, distribution and traditional uses of medicinal plants in Jammu and Kashmir (J&K) state of Indian Himalayas. Journal of Herbal Medicine, 17, 100280.
Thamilselvan, P., & Sathiaseelan, J. (2015). A comparative study of data mining algorithms for image classification. Int. J. Educ. Manage. Eng, 5(2), 1-9.
Thejas, G. S., Joshi, S. R., Iyengar, S. S., Sunitha, N. R., & Badrinath, P. (2019). Mini-batch normalized mutual information: A hybrid feature selection method. IEEE Access, 7, 116875-116885.
Wang, Y., & Wang, Z. (2019). A survey of recent work on fine-grained image classification techniques. Journal of Visual Communication and Image Representation, 59, 210-214.
Wolberg, W., (1990). “Breast Cancer Wisconsin (Original) [Dataset]”. UCI Machine Learning Repository. https://doi.org/10.24432/C5HP4Z.
Xue, B., Zhang, M., Browne, W. N., & Yao, X. (2015). A survey on evolutionary computation approaches to feature selection. IEEE Transactions on Evolutionary Computation, 20(4), 606-626.
Zhou, H., Wang, X., & Zhu, R. (2022). Feature selection based on mutual information with correlation coefficient. Applied intelligence, 52(5), 5457-5474.