Ali, M. M., Paul, B. K., Ahmed, K., Bui, F. M., Quinn, J. M., & Moni, M. A. (2021). Heart disease prediction using supervised machine learning algorithms: Performance analysis and comparison.
Computers in Biology and Medicine,
136, 104672.
https://doi.org/https://doi.org/10.1016/j.compbiomed.2021.104672
Bergstra, J., & Bengio, Y. (2012). Random search for hyper-parameter optimization. The journal of machine learning research, 13(1), 281-305.
Bumm, C. V., Wölfle, U. C., Keßler, A., Werner, N., & Folwaczny, M. (2023). Influence of decision-making algorithms on the diagnostic accuracy using the current classification of periodontal diseases—a randomized controlled trial.
Clinical Oral Investigations,
27(11), 6589-6596.
https://doi.org/https://doi.org/10.1007/s00784-023-05264-z
Deepan, P., Vidhya, R., Rajalingam, B., Santhoshkumar, R., & Arul, N. (2024). FLAML-HDPS Model: An Efficient and Intelligent AutoML Approach for Heart Disease Prediction. International Conference on Computer & Communication Technologies.
Dorraki, M., Liao, Z., Abbott, D., Psaltis, P. J., Baker, E., Bidargaddi, N., Wardill, H. R., van den Hengel, A., Narula, J., & Verjans, J. W. (2024). Improving cardiovascular disease prediction with machine learning using mental health data: a prospective UK Biobank study.
JACC: Advances,
3(9_Part_2), 101180.
https://doi.org/https://doi.org/10.1016/j.jacadv.2024.101180
Fahimfar, N., Khalili, D., Sepanlou, S. G., Malekzadeh, R., Azizi, F., Mansournia, M. A., Roohafza, H., Emamian, M. H., Hadaegh, F., & Poustchi, H. (2018). Cardiovascular mortality in a Western Asian country: results from the Iran Cohort Consortium.
BMJ open,
8(7), e020303.
https://doi.org/https://doi.org/10.1136/bmjopen-2017-020303
Feurer, M., Klein, A., Eggensperger, K., Springenberg, J., Blum, M., & Hutter, F. (2019). Efficient and robust automated machine learning.
Advances in neural information processing systems,
28, 113-134.
https://doi.org/https://doi.org/10.1007/978-3-030-05318-5_6
Jafarnejad Chaghoshi, A., Rezasoltani, A., & Khani, A. M. (2024). Unleashing the Power of Ensemble Learning: Predicting National Ranks in Iran’s University Entrance Examination.
Industrial Management Journal,
16(3), 457-481.
https://doi.org/https://doi: 10.22059/imj.2024.381521.1008178.
Jha, S., Vaithiyanathan, D., Verma, P., & Kaur, B. (2024). An Automated Machine Learning Approach for Detecting Chronic Ischemic Heart Disease. 2024 International Conference on Advances in Modern Age Technologies for Health and Engineering Science (AMATHE).
Kenny, A., Ray, T., Limmer, S., Singh, H. K., Rodemann, T., & Olhofer, M. (2023). Hybridizing TPOT with Bayesian optimization. Proceedings of the Genetic and Evolutionary Computation Conference.
Koshiga, N., Borugadda, P., & Shaprapawad, S. (2023). Prediction of heart disease based on machine learning algorithms. 2023 International Conference on Inventive Computation Technologies (ICICT).
Maihami, V., Khormehr, A., & Rahimi, E. (2016). Designing an expert system for prediction of heart attack using fuzzy systems.
Scientific Journal of Kurdistan University of Medical Sciences,
21(4), 118-131.
https://doi.org/https://civilica.com/doc/810306
Maleki, S., & Mehrjerdi, Y. Z. (2022). Diagnosis of coronary artery disease by Bat and Harris hawk meta-heuristic optimization algorithms and machine learning methods. Journal of Health Administration, 25(1), 57-68.
Mangalath Ravindran, S., Moorakkal Bhaskaran, S. K., K. Ambat, S., Balakrishnan, K., & Manguttathil Gopalakrishnan, M. (2022). An automated machine learning methodology for the improved prediction of reference evapotranspiration using minimal input parameters.
Hydrological Processes,
36(5), e14571.
https://doi.org/https://doi.org/10.1002/hyp.14571
Mansouri, M., & Dadvar, M. (2017).
Diagnosing heart attacks using a model based on genetic algorithm and ensemble learning Fifth National Conference on Computer Science, Engineering and Information Technology, Babol.
https://civilica.com/doc/810306
Mueller, J., Shi, X., & Smola, A. (2020). Faster, simpler, more accurate: Practical automated machine learning with tabular, text, and image data. Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.
Nazari, S., & Jodki, S. (2020). Using genetic algorithm and K-means clustering to improve the accuracy of support vector machine in the diagnosis of heart disease National Conference on Latest Achievements in Data Engineering and Knowledge and Soft Computing, Shahrekord.
Olson, R. S., & Moore, J. H. (2019). TPOT: A tree-based pipeline optimization tool for automating machine learning. Workshop on automatic machine learning.
Orlenko, A., Kofink, D., Lyytikäinen, L.-P., Nikus, K., Mishra, P., Kuukasjärvi, P., Karhunen, P. J., Kähönen, M., Laurikka, J. O., & Lehtimäki, T. (2020). Model selection for metabolomics: predicting diagnosis of coronary artery disease using automated machine learning.
Bioinformatics,
36(6), 1772-1778.
https://doi.org/https://doi.org/10.1093/bioinformatics/btz796
Paladino, L. M., Hughes, A., Perera, A., Topsakal, O., & Akinci, T. C. (2023). Evaluating the performance of automated machine learning (AutoML) tools for heart disease diagnosis and prediction.
Ai,
4(4), 1036-1058.
https://doi.org/https://doi.org/10.3390/ai4040053
Pandiaraj, A., Prakash, S. L., & Kanna, P. R. (2021). Effective heart disease prediction using hybridmachine learning. 2021 Third international conference on intelligent communication technologies and virtual mobile networks (ICICV).
Reddy, N. N., Nipun, L., Baba, M. U., Rishindra, N., & Shilpa, T. (2024). Optimizing heart disease prediction through ensemble and hybrid machine learning techniques.
International Journal of Electrical and Computer Engineering (IJECE),
14(5), 5744-5754.
https://doi.org/https://doi.org/10.11591/ijece.v14i5.pp5744-5754
Salomon, R. (1997). Raising theoretical questions about the utility of genetic algorithms. International Conference on Evolutionary Programming.
Sarraf-Zadegan, N., Boshtam, M., Malekafzali, H., Bashardoost, N., Sayed-Tabatabaei, F., Rafiei, M., Khalili, A., Mostafavi, S., Khami, M., & Hassanvand, R. (1999). Secular trends in cardiovascular mortality in Iran, with special reference to Isfahan.
Acta cardiologica,
54(6), 327-333.
https://doi.org/https://pubmed.ncbi.nlm.nih.gov/10672288
Truong, A., Walters, A., Goodsitt, J., Hines, K., Bruss, C. B., & Farivar, R. (2019). Towards Automated Machine Learning: Evaluation and Comparison of AutoML Approaches and Tools 2019 IEEE 31st International Conference on Tools With Artificial Intelligence (ICTAI).
Villmann, T., Kaden, M., Lange, M., Sturmer, P., & Hermann, W. (2014). Precision-Recall-Optimization in Learning Vector Quantization Classifiers for Improved Medical Classification Systems 2014 IEEE Symposium on Computational Intelligence and Data Mining (CIDM).
Wang, J., Xue, Q., Zhang, C. W. J., Wong, K. K. L., & Liu, Z. (2024). Explainable coronary artery disease prediction model based on AutoGluon from AutoML framework.
Frontiers in Cardiovascular Medicine,
11.
https://doi.org/https://doi.org/10.3389/fcvm.2024.1360548
Yadav, D., Saini, P., & Mittal, P. (2021). Feature Optimization Based Heart Disease Prediction using Machine Learning 2021 5th International Conference on Information Systems and Computer Networks (ISCON).
Yu, H. (2023). Analysis and Prediction of Heart Disease Based on Machine Learning Algorithms 2023 8th International Conference on Intelligent Computing and Signal Processing (ICSP).