Ahmad, I., Alqarni, M. A., Almazroi, A. A., & Tariq, A. (2020). Experimental evaluation of clickbait detection using machine learning models. Intelligent Automation & Soft Computing, 26(4), 1335–1344.
Ahmed, S. F., Alam, M. S. B., Hassan, M., Rozbu, M. R., Ishtiak, T., Rafa, N., Mofijur, M., Ali, A. B. M. S., & Gandomi, A. H. (2023). Deep learning modelling techniques: Current progress, applications, advantages, and challenges.
Artificial Intelligence Review, 13521–13617(11).
https://doi.org/10.1007/s10462-023-10466-8
Albayati, A. Q., Altaie, S. A. J., Al-Obaydy, W. N. I., & Alkhalid, F. F. (2024). Performance analysis of optimization algorithms for convolutional neural network-based handwritten digit recognition.
IAES International Journal of Artificial Intelligence, 13(1).
https://doi.org/10.11591/ijai.v13.i1.pp563-571
Al-Sarem, M., Saeed, F., Al-Mekhlafi, Z. G., Mohammed, B. A., Hadwan, M., Al-Hadhrami, T., Alshammari, M. T., Alreshidi, A., & Alshammari, T. S. (2021). An improved multiple features and machine learning-based approach for detecting clickbait news on social networks.
Applied Sciences, 11(20), 9487.
https://doi.org/10.3390/app11209487
Bakrianoo. (n.d.). GitHub - bakrianoo/aravec: AraVec is a pre-trained distributed word representation (word embedding) open source project which aims to provide the Arabic NLP research community with free to use and powerful word embedding models. In
GitHub.
https://github.com/bakrianoo/aravec
Chawda, S., Patil, A., Singh, A., & Save, A. (2019). A novel approach for clickbait detection. In
2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI) (pp. 1318–1321).
https://doi.org/10.1109/ICOEI.2019.8862781
Chen, Y., Conroy, N. J., & Rubin, V. L. (2015). Misleading online content: Recognizing clickbait as “false news.” In
Proceedings of the 2015 ACM on Workshop on Multimodal Deception Detection (pp. 15–19).
https://doi.org/10.1145/2823465.2823467
Dam, S. R., Panday, S. P., & Thapa, T. B. (2021). Detecting clickbaits on Nepali news using SVM and RF. In Proceedings of 9th IOE Graduate Conference, 9, 140–146.
Luque, A., Carrasco, A., Martín, A., & de las Heras, A. (2019). The impact of class imbalance in classification performance metrics based on the binary confusion matrix.
Pattern Recognition, 91, 216–231.
https://doi.org/10.1016/j.patcog.2019.02.023
Putri, D. U. K., & Pratomo, D. N. (2022). Clickbait detection of Indonesian news headlines using fine-tune bidirectional encoder representations from transformers (BERT). Inform: Jurnal Ilmiah Bidang Teknologi Informasi Dan Komunikasi, 7(2), 162–168.
Sahana, M., Umesh, P., Kodipalli, A., & Rao, T. (2024). EmoCNN: Unleashing human emotions with customized CNN using different optimizers.
Procedia Computer Science, 235, 1310–1318.
https://doi.org/10.1016/J.PROCS.2024.04.124
Zheng, H.-T., Chen, J.-Y., Yao, X., Sangaiah, A. K., Jiang, Y., & Zhao, C.-Z. (2018). Clickbait convolutional neural network.
Symmetry, 10(5), 138.
https://doi.org/10.3390/sym10050138