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Abstract 

The widespread adoption of Android phones has heightened concerns about user privacy. 

This research presents an Adaptive Privacy Management System (APMS) that integrates 

Machine Learning (ML) models with Differential Privacy techniques to enhance privacy 

protection. The APMS monitors application behavior and employs ML algorithms to detect 

anomalies and enable context-aware privacy enforcement. Differential Privacy ensures that 

sensitive data remains protected through the addition of noise and privacy-preserving 

computations. Experimental results demonstrate that the APMS achieves a 92.5% accuracy 

rate in detecting the privacy leakage. The anomaly detection model, using Random Forest, 

shows high accuracy (92.5%), recall (89.5%), and precision (73.9%), effectively identifying 

both normal and anomalous behaviors. Additionally, the impact of noise on data utility, 

controlled by the privacy budget (ε), is manageable. The results show that APMS is a robust 

system for safeguarding user confidential information, contributing to a more secure and 

privacy-centric Android ecosystem. 
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Introduction 

The exponential growth of Android devices has fundamentally reshaped the digital landscape, 

offering unprecedented connectivity and convenience to billions of users worldwide. 

According to a Statista report (2024), Android dominates the mobile operating system market, 

powering over 70% of all smartphones globally. This widespread adoption underscores the 

critical importance of securing user confidential information against the backdrop of 

escalating cyber threats. The open-source nature of the Android ecosystem and diverse 

application environment present security challenges, making it a prime target for malicious 

actors (Enck et al., 2014).  

Data breaches and unauthorized access to sensitive information are frequent. Personal data, 

financial records, and proprietary information are targeted, which leads to severe financial 

losses, reputational damage, and privacy violations (Zhang et al., 2022). High-profile 

incidents that exposed millions of users' personal information highlight the urgent need for 

robust security measures.  

To protect against privacy leakage, several advanced techniques were proposed. These 

techniques are broadly classified into static analysis, dynamic analysis, hybrid analysis, and 

machine learning-based approaches. Static analysis involves reviewing an application's source 

code to identify potential privacy risks without executing the application (Verma & Nand, 

2022). This approach enables developers to detect vulnerabilities early in the development 

cycle, reducing the likelihood of privacy breaches before deployment (Arzt et al., 2014). In 

contrast, dynamic analysis monitors an application's behavior during runtime to uncover 

privacy violations in real-world scenarios, making it particularly effective in identifying 

issues that may not be visible in static code (Enck et al., 2014). Hybrid techniques are an 

amalgamation of both static and dynamic techniques. It takes advantage of both techniques. 

Machine learning models identify the patterns of suspicious behavior of an app (Demontis et 

al., 2019). While these techniques offer significant advancements in detecting privacy leaks, 

they also face challenges such as computational overhead, scalability, and adaptability to the 

constantly evolving landscape of cyber threats (Xu et al., 2021). 

Further, emerging technologies offer promising avenues to enhance Android security 

further. For example, Machine learning can be leveraged to detect anomalous behaviors 

indicative of potential security breaches, while blockchain technology can provide immutable 

records of data transactions, enhancing transparency and traceability (Cholevas et al., 2024). 

Advanced encryption techniques ensure that even if data is intercepted, it remains 

unintelligible to unauthorized users.  

This research introduces an Adaptive Privacy Management System (APMS) that 

synergizes Machine Learning (ML) models with Differential Privacy techniques to enhance 

the protection of sensitive data on Android devices by monitoring application behavior.  ML 
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algorithms were employed to detect anomalies. Context awareness further strengthens our 

approach by incorporating contextual information such as location, time, and user activity to 

make more accurate and privacy-preserving predictions. Differential Privacy adds a layer of 

security by incorporating noise into data queries, thereby preserving the privacy of individual 

data points (Heinrich et al., 2024). This technique ensures that sensitive information is not 

compromised, even when aggregated data is analyzed. The APMS dynamically adjusts 

privacy settings based on user context, historical usage patterns, and identified risks, thus 

permitting data access only under secure conditions. 

The remaining section of this paper is as follows. Section II reports a literature review. 

Section III focuses on the proposed methodology. Section IV discusses the obtained results, 

and Section V concludes the paper.   

Literature Review 

The protection of user privacy within the Android ecosystem has become an increasingly 

critical area of research, driven by the widespread use of mobile applications and the 

sensitivity of data they access. The literature presents a variety of frameworks and 

methodologies aimed at enhancing Android privacy protection through improved permission 

handling, adaptive mechanisms, and user-centred designs. Android’s permission-based 

security model allows users to control application access to sensitive resources such as 

location, contacts, and media files. Despite its importance, researchers have identified critical 

shortcomings in this model. Many applications request permissions unrelated to their core 

functions, leading to unnecessary data exposure and potential privacy violations 

(Harikrishnan & Periyasamy, 2024; Zhang et al., 2023). One of the major concerns raised in 

the literature is over-privileging, where applications request excessive permissions beyond 

their functional needs. Studies indicate that apps, especially in the health sector, frequently 

collect more information than required (Davis, 2023; Zhang et al., 2023). To address this, a 

framework was proposed to restrict extraneous permissions and limit unauthorized data 

access (Mishra et al. 2022). In response to permission misuse, fine-grained permission control 

frameworks were introduced. These systems offer users the ability to grant permissions at a 

more detailed level, improving autonomy and aligning permission grants with specific app 

functionalities. For instance, UIPDroid enables widget-level permission settings (Duan et al., 

2022), while runtime monitoring introduces the mechanisms to ensure permission usage 

adheres to declared privacy policies (Wu et al., 2018). 

Extending the concept of granularity, context-aware permission management dynamically 

adjusts permission grants based on contextual factors such as user location, behaviour, or time 

of access. This adaptive approach ensures that sensitive resources are only accessed when 

contextually appropriate (Abdella et al., 2016). The SmartGuard framework exemplifies this 

model by personalizing location privacy controls according to user preferences and device 
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context (Niu et al., 2021). Despite advancements in permission frameworks, low user 

awareness remains a significant obstacle to effective privacy management. Studies reveal that 

most users rarely review or modify app permissions (Alsoubai et al., 2022; Scoccia et al., 

2018). To bridge this awareness gap, DopCheck, a framework was proposed that monitors 

changes in privacy policies and alerts users to data-sharing practices, thereby promoting 

informed decision-making (Yan et al., 2024). 

Developers often request extensive permissions due to unclear guidelines or reliance on 

third-party libraries. Research underscores the importance of educating developers and 

enforcing best practices (Tahaei et al., 2023; Alkindi et al., 2021). Frameworks such as LP-

Guardian demonstrate that comprehensive privacy can be achieved without degrading user 

experience (Fawaz & Shin, 2024). 

Recent efforts in privacy protection emphasize user-centric approaches, where users are 

empowered to manage, restrict, or revoke permissions based on their preferences. 

Frameworks like CUPA and AFP offer personalized privacy management without disrupting 

app functionality (Scoccia et al., 2018; Alkindi et al., 2020). Moreover, intent-aware 

permission architectures have been developed to enhance user understanding by clearly 

communicating the purpose behind data access (Rahman et al., 2022). 

In summary, the existing body of literature highlights the transition from traditional, static 

permission models to context-sensitive and user-oriented frameworks. These innovations 

reflect a growing emphasis on empowering users, reducing unnecessary data access, and 

maintaining usability. all of which are essential in addressing contemporary privacy 

challenges within the Android environment. 

Methodology  

This section outlines the methodology adopted for creating the APMS framework, detailing 

the data collection process, Machine Learning (ML) model development, Differential Privacy 

(DP) mechanism implementation, privacy enforcement, and system evaluation.  

 

Figure 1.  System overview 

Mobile Clients 

Perturbation Engine  Server 
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Figure 1 shows the flow of data and interactions in an Adaptive Privacy Management 

System (APMS). It starts with the Client, represented by a user device, which sends raw data 

(e.g., precise location information) to the Perturbation Engine. The Perturbation Engine 

applies Differential Privacy to obfuscate the sensitive data, ensuring user anonymity and 

privacy. The perturbed data is then forwarded to the Server, which processes the obfuscated 

information to provide location-based services. Finally, the results are sent back to the Client, 

maintaining a balance between data utility and user privacy throughout the process. 

Data Collection and Preprocessing: Data collection is the foundation of the proposed 

system, focusing on gathering user behavior, app access patterns, and contextual information 

(e.g., location, time, and network state). User behavior data is essential to detect anomalies 

and develop privacy models tailored to individual users. 

Collected Features: 

1. User behaviour: app access frequency, app usage behaviour, access to sensitive data 

2. Context-sensitive: Location, time of access, Device status, Sensitivity level of data 

accessed by the app: 

3. App-specific behaviour: permission, api calls, third-party library 

These features were collected by using Android’s API’s such as UsageStatsManager, 

ConnectivityManager, LocationManager, and PackageManager. Data, preprocessing 

techniques such as feature extraction, normalization, and noise reduction were applied to 

remove the irrelevant or noisy data and make it suitable for machine learning models. 

Let 𝑋 = { 𝑢i, 𝑐i , 𝑎𝑖}, represent the set of data points collected from Android applications, 

where: 

𝑢i : user behavior (e.g., frequency of access, data type accessed) 

𝑐i : contextual information (e.g., location, time, network condition, battery information) 

𝑎𝑖 : app-specific parameters (e.g., permissions, app metadata) 

The data points are preprocessed, and key features F= {f1, f2, …, fm} are extracted from 

X, where each feature represents a relevant factor for privacy management, such as app access 

frequency, user context, and app behavior. 

Machine Learning Model Development 

According to Ashisha et al. (2023), ML techniques are very popular in medical applications 

for predicting different disorders. Machine Learning (ML) enhances Adaptive Privacy 
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Management Systems (APMS) by enabling dynamic, context-aware privacy protection. It 

analyzes user behavior to predict privacy preferences, allowing the system to personalize 

privacy settings in real-time. ML also supports the detection of anomalies and privacy risks, 

ensuring that unusual patterns are flagged and privacy violations are prevented. “Additionally, 

machine learning optimizes the balance between privacy and utility, ensuring data remains 

useful while safeguarding sensitive information. Thangamayan et al. (2024) show that 

Random Forest and Gradient Boosting achieved the highest accuracy, while Logistic 

Regression performed the worst. 

In this step, two key ML models are developed: 

The model analyzes the permissions requested by an app and its network traffic patterns, 

comparing them against a baseline to predict suspicious behavior and help prevent user data 

leakage. Fuzzy logic & machine learning algorithms are combined for risk prediction (Pattun 

et al., 2023). 

Anomaly Detection Model: designed to identify unusual patterns in data that deviate from 

the norm. In the context of privacy leakage, this model helps detect activities that are out of 

the ordinary or deviate from expected user behaviors. The Isolation Forest efficiently detects 

outliers in a high-dimensional app dataset. The model detects deviations from expected 

patterns (anomalies) that may indicate privacy risks. The anomaly detection model techniques 

used to flag unusual access patterns, as demonstrated by Kyritsis et al. (2018). 

Mathematically, anomaly detection can be shown as: 

Let f(x) represent the function that maps feature vectors to a normal behavior profile. The 

model is trained on the historical data Xtrain to learn normal behavior N(x): 

𝑁(𝑥) =  Ε [ 𝑓(𝑥) | 𝑥𝜖 𝑋𝑡𝑟𝑎𝑖𝑛]                                                                                                   (1) 

For a new data point 𝑥𝑡  , the anomaly score 𝐴(𝑥𝑡) is computed as the deviation from 

normal behavior: 

𝐴(𝑥𝑡) = [ |𝐹(𝑥𝑡) − 𝑁(𝑥)| ]2                                                                                                    (2) 

If 𝐴(𝑥𝑡) >    , where δ is a predefined threshold, the behaviour is flagged as anomalous, 

indicating a potential privacy violation. 

Context-Aware Privacy Prediction: The model predicts optimal privacy settings based on 

user-specific behavior and contextual information. For instance, if a user accesses sensitive 

information from a trusted network, the privacy settings may differ from when they access it 

from an unknown public network. By incorporating context, the model ensures that the 

privacy settings adapt dynamically, a technique supported by the recent work by Bou C. et al. 

(2021) on context-aware systems. 
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Let C (u,c) be a context-aware function that predicts the optimal privacy settings for a user 

u based on their context c. This function is represented as: 

𝑃(𝑥𝑡) = 𝐶(𝑢𝑡 , 𝑐𝑡)                                                                                                                    (3) 

The function 𝑃(𝑥𝑡) is trained on historical data to predict privacy settings, where 𝑢𝑡 

represents user-specific factors and 𝑐𝑡  represents contextual factors such as location, time, 

and network conditions. 

The ML model for privacy prediction is trained to minimize the error in predicting privacy 

settings. Given a set of training data 𝑥𝑡𝑟𝑎𝑖𝑛 , the objective is to minimize the prediction error: 

min ∑ [|𝑃(𝑥𝑡) −  𝑦𝑡|]2
𝑥𝑡 ∈ 𝑥𝑡𝑟𝑎𝑖𝑛

                                                                                                (4) 

where 𝑦𝑡 is the ground truth for privacy settings. 

Noise Impact or Differential Privacy Mechanism Implementation 

To ensure Differential Privacy, we apply noise η to the data query results. Let Q(x) be the 

query function for the data access request, and let ΔQ represent the global sensitivity of the 

query: 

∆𝑄 = max |𝑄(𝑥) − 𝑄(𝑥′)|                                                                                                      (5) 

For each query, noise from a Laplace distribution  𝐿𝑎𝑝(𝑏) where 𝑏 =
∆𝑄

∈
  , is added to 

preserve privacy: 

𝑄(𝑥)𝐷𝑃 = 𝑄(𝑥) +  𝜂                                                                                                                (6) 

𝜂 ~ 𝐿𝑎𝑝( 
Δ𝑄

𝜖
 )                                                                                                                            (7) 

Here, ϵ represents the privacy budget. The privacy loss ℒ for a user 𝑢 is defined as: 

ℒ(u) = ∑ 𝜖𝑖
𝑛
𝑖=1                                                                                                                          (8) 

where 𝜖𝑖 is the privacy budget used for each query 𝑖. The system tracks ℒ(u) and adjusts 

noise levels dynamically to maintain privacy. 

The privacy enforcement mechanism is based on the results of the anomaly detection and 

context-aware privacy prediction models. 

 Anomaly-Based Enforcement: If    𝐴(𝑥𝑡) >  𝛿 , the system enforces stricter privacy 

settings by increasing noise levels in the DP mechanism or denying the app access 

request. 
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 Context-Aware Enforcement: The system dynamically adjusts privacy settings based on 

the output 𝑃(𝑥𝑡) of the context-aware model. If the predicted privacy setting is stricter 

than the current setting, the system enforces the stricter setting. 

System Performance Evaluation 

This multi-faceted validation approach, including simulations and user studies, aligns with 

current trends in privacy management research. 

The performance of the ML models is evaluated using metrics such as accuracy A, 

precision P, recall R, and F1-score F1, defined as: 

𝐴 =  
TP+TN 

TP+TN+FP+FN
                                                                                                                      (9) 

𝑃 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                                                                                               (10) 

𝑅 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                                                                              (11) 

𝐹1 = 2.
𝑃.𝑅

𝑃+𝑅
                                                                                                                             (12) 

where: 

 TP: true positives (correctly detected anomalies or privacy violations) 

 TN: true negatives (correctly identified normal behaviors) 

 FP: false positives (incorrectly flagged normal behaviors) 

 FN: false negatives (missed anomalies or privacy violations) 

The goal is to maximize A, P, R, and F1 to ensure high accuracy and effectiveness in 

managing privacy. 

Results  

The accuracy of the anomaly detection model  

 Dataset: Simulated user behaviour, app access patterns, and contextual information (e.g., 

location, network state). 

 Threshold for Anomalies: Set to detect 10% contamination (i.e., 10% of the data are 

anomalous). 
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Table 1. Confusion matrix for anomaly detection 

 
Predicted Positive Predicted Negative 

Actual Positive 85 30 
Actual Negative 10 200 

 

Table 2. Performance of anomaly detection 

Metric Value 
Accuracy 92.50% 
Precision 73.90% 

Recall 89.50% 
F1-Score 80.90% 

In Table 2, the performance of anomaly detection has been calculated from Table 1. 

 Accuracy is high at 92.5%, meaning that the anomaly detection system can correctly 

identify normal and anomalous behaviors most of the time. 

 Recall is 89.5%, indicating that the system correctly identifies actual anomalies. 

 Precision is lower (73.9%) due to a moderate number of false positives, but still reflects 

reliable detection. 

Privacy Breach Reduction 

The effectiveness of APMS privacy has been measured using the breach metric. 

Unauthorized app requests for sensitive information (e.g., contacts, location) are 

simulated. Data breaches are measured with and without the APMS being enabled. 

Table 3. Privacy Breach Metric 

Privacy Breach Metric Without APMS With APMS Reduction (%) 

Number of Breaches 45 8 82% 

Unauthorized Access 1000 175 82.50% 

Table 3 shows the reduction in privacy breaches by 82%, demonstrating that it 

successfully denies suspicious app access and adjusts privacy settings based on real-

time anomaly detection and context-aware models. 

Noise Impact on Data Utility (Differential Privacy Evaluation) 

Adding noise to data using differential privacy mechanisms helps protect user privacy 

by distorting app queries that request personal information. It ensures that individual 

data remains confidential while still allowing for useful insights to be derived from the 

data. 
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Overall System Performance 

Table 4. Privacy Breach Metric 

Metric Value 

Anomaly Detection Accuracy 92.50% 

Privacy Breach Reduction 82% 

 The APMS demonstrates strong performance in both anomaly detection and privacy 

breach reduction. 

 The lower privacy budget ε value ensures more privacy but may degrade utility. 

Conclusion 

The Adaptive Privacy Management System (APMS) performs excellently in both 

anomaly detection and privacy breach reduction. Anomaly detection accuracy is 92.5%, 

the system efficiently distinguishes between normal and anomalous behaviors, while a 

recall rate of 89.5% ensures that most true anomalies are accurately identified. Although 

the precision, at 73.9%, reflects a moderate level of false positives, it still maintains a 

reliable level of detection. 

APMS significantly reduces 82% privacy breaches, effectively curbing unauthorized 

app access to sensitive user information. Noise impact has been evaluated through 

differential privacy mechanisms. Additional noise is effectively controlled by the privacy 

budget (ε). At smaller values of ε (e.g., 0.1), it ensures more privacy, but noise heavily 

impacts data utility and vice versa. 

In conclusion, APMS effectively balances the need for strong privacy protection with 

maintaining the usefulness of data. By offering reliable anomaly detection, significantly 

reducing privacy risks, and allowing flexible control over noise levels, the system 

demonstrates its ability to safeguard user privacy while minimizing any impact on 

overall performance. 
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