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Abstract 

Federated Learning (FL) has emerged as a revolutionary technique for distributed machine 

learning for training a model on shared data without sharing the data itself. Nevertheless, 

privacy-related concerns and scalability difficulties remain a problem. This paper discusses 

the state-of-the-art works to improve the privacy and convergence at FL frameworks for 

targeted healthcare and financial applications, as well as smart devices. It focuses on 

methodologies that preserve user privacy, such as differential privacy, homomorphic 

encryption, secure multi-party computation, and methods that enhance the model’s efficiency, 

including model compression, communication optimization, and adaptive optimization 

algorithms. To overcome these challenges, this study helps in the future design of FL systems 

for vital domains with high scalability. 

Keywords: Federated Learning (FL), Privacy Enhancement, Adaptive Federated 

Optimization, Heterogeneity, Scalability, Federated Averaging. 

Introduction 

Federated Learning (FL) is an innovative machine learning architecture that enables model 

training across multiple parties or devices, such as individual devices or organizations, 

without the need to transfer raw data. Indeed, this decentralized data handling and storage 

organization directly solves the emergent need for privacy protection, especially in emerging 

domains, including healthcare, finance, and smart devices, where data protection and 

compliance with privacy legislation like GDPR and HIPAA are paramount. Nevertheless, FL 

faces critical challenges, primarily centered on ensuring robust privacy guarantees and 
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achieving satisfactory computational performance. These challenges are further compounded 

in complex environments where the data distribution is irregular and different devices serve 

different distributions for clients and servers that need real-time interaction. 

Privacy issues in FL are because gradients, model updates, or inference attacks can 

potentially leak the data. Several advanced techniques have been worked out to minimize 

these risks. Differential Privacy (DP) perturbs model updates directly with calibrated noise to 

offer the theoretical protection of hiding specific data details. However, it may not always 

address the problem of privacy while still trying to retain the accuracy of the model. 

Homomorphic Encryption (HE) enables computations to be performed directly on encrypted 

data, ensuring data confidentiality during processing. However, due to its high computational 

cost, it is not well-suited for real-time applications. Secure Multi-Party Computation (SMPC), 

on the other hand, allows multiple participants to jointly perform computations without 

exposing their private data to one another. Despite the high security that SMPC provides, 

there are important issues, such as communication overhead and synchronization, which have 

to be addressed in this protocol (Abadi et al., 2016). Another technique, which is also used, is 

known as pseudonymization, which anonymizes data so as not to be reverse-engineered. 

Although easy to apply, its effectiveness is contingent on the honesty of the aggregators and 

has the problem of re-identification. It is performed over various important segments like 

healthcare, finance, and IoT networks, where the difficulty and opportunities vary (Kairouz et 

al., 2021). 

Flaws affecting efficiency in FL are also equally substantial and chiefly pertain to the 

computational and communication requirements of distributed learning (Bonawitz et al., 

2019). The concept of model compression includes pruning, quantization, and distillation, 

which makes models compact for efficient training and deployment. However, these methods 

are at the cost of model accuracy and computational time as well (Li et al., 2020). As a way to 

reduce the amount of communicated data between individual participants and the central 

server, Communication-efficient algorithms like gradient sparsification and Federated 

Averaging or FedAvg have been proposed; however, they also have the problem of potential 

bottlenecks in large-scale systems. Instead, more complex approaches to adaptively optimize 

client updates include FedProx and learning rate control; these consider the diversity of the 

distribution of client data and client computation resources (Yang, Liu et al., 2019). The 

integration of Edge AI, which uses FL together with edge computing, enables on-device 

processing and inference, although resource restrictions at the edge may hinder the 

deployment of the technique (McMahan et al., 2017). All these techniques are designed to 

address the specific requirements of the healthcare and the financial system, as well as smart 

devices, to operate effectively under different conditions. 
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Figure 1. Overview of Federated Learning Techniques and Applications 

In order to address the problem of the gap between privacy and efficiency, new approaches 

are being developed, which use a combination of both methods – split learning and 

personalized federated learning (Geyer, Klein, & Nabi, 2017). The proposed split learning 

approach performs computations on the client side and server side, where only the necessary 

data is exposed in the client (Truex et al., 2019). The personalized federated learning 

categorizes generic models from the World Wide Web as relevant to local clients while 

maintaining the confidentiality of outcomes (Zhao et al., 2018). Such approaches are 

particularly preferred to achieve both the goals of {preserving the privacy} and {developing 

efficient resource} management (Hardy, Berkovsky, Penschuck, Germanakos, & Bellotti, 

2020).  

The following tables summarize the privacy and efficiency techniques, their strengths, 

challenges, and applications: 

Table 1. Privacy and efficiency techniques 

Privacy Technique Strengths Challenges Applications 

Differential Privacy (Li et al., 

2020) 

Provides strong 

theoretical guarantees 

May reduce model 

accuracy 

Healthcare, finance, and 

smart devices 

Homomorphic Encryption  

(Hynes et al., 2018) 

Ensures secure 

computation on encrypted 

data 

High computational 

costs 

Medical data 

aggregation, IoT systems 

Secure Multi-Party 

Computation (Smith et al. 
2017) 

Facilitates secure 

collaborative computation 

Communication 

overhead 

Collaborative 

diagnostics, financial 
risk models 

Pseudonymization (Wang, et 

al. 2020) 

Simplifies 

implementation through 

anonymity 

Vulnerable to re-

identification risks 

Genomic analysis, trend 

forecasting 
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In conclusion, Federated Learning holds immense potential as a privacy-preserving, 

efficient framework for modern applications.  

Table 2. Efficiency framework for modern applications 

Efficiency Technique Key Features Challenges Applications 

Model Compression 

(Zhu et al. 2019) 

Reduces model size 

through pruning, 

quantization, and 

distillation 

Potential accuracy loss 
Medical imaging, low-

latency fraud detection 

Communication 

Efficiency (Shokri & 

Shmatikov, 2015) 

Minimizes data transfer 

through sparsification and 

aggregation techniques 

Communication 

bottlenecks in large-

scale systems 

Real-time medical 

diagnostics, personalized 

recommendations 
Adaptive Optimization 

(Wang et al. 2019) 
Adapts to heterogeneous 

data and client conditions 
Implementation 

complexity 
Healthcare data diversity, 

IoT device training 
Edge AI Integration  

(Caldas et al. 2018) 
Enables localized 

processing and inference 
Device resource 

limitations 
On-device diagnostics, 

smart device automation 

It is therefore possible to scale FL using state-of-the-art techniques and hybrid methods to 

address the requirements of various and complex domains, thus making it possible to develop 

reliable, more scalable, and secure decentralization of learning systems (Konečný et al., 

2016). This paper provides a rich presentation of these techniques and their uses and 

importance in the next FL systems in healthcare, finance, and smart device networks.   

Methodology  

Privacy Enhancement Techniques 

Some of the biggest issues in federated learning (FL) systems include privacy issues, which 

may be a big deal in business-oriented areas such as consideration in healthcare, finance, and 

smart devices (Yang et al., 2018). Several methods have been worked out to overcome all 

these problems, and all of these have been designed and developed using quite different 

approaches to support collaborative learning while preserving the privacy of the learners. This 

section gives a detailed understanding of the four IM/information protection methods, 

namely, Differential Privacy (DP), Homomorphic Encryption (HE), Secure Multi-Party 

Computation (SMPC), and Federated Analytics with Pseudonymization, uses, limitations, and 

comparison (Bonawitz et al., 2017). 

2.1 Differential Privacy (DP) 

Differential Privacy is a statistical procedure that prevents individual data contributions from 

being distinguished by adding calibrated noise into gradients or updates to models (Li et al., 

2019). The first principle for dealing with data is to contribute due to any single item in a set 

so small that it can be regarded effectively as negligible. This mechanism is formally defined 

by the ϵ Differential Privacy metric, where the parameter ϵ determines the privacy level. A 

commonly used implementation is expressed as 
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Δu = f(x) +𝒩(0, σ2)  

Where: 

(f(x): Theoriginalfunction(e. g. , modelgradientsorupdates). 

𝒩(0, σ2): Gaussiannoisewithmean0andvariance\(σ2\). 

Δu: Theoutputafterapplyingdifferentialprivacy. 

In the field of health care, DP has been applied to preserve the privacy of patients' records 

during the shared training of diagnostic models (Mohri et al., 2019). For instance, healthcare 

facilities can make use of patients’ information to train models with the restriction that no 

personal details of the patient will be used. In finance, it protects transactional data used in 

fraud detection and credit scoring and enables different institutions to improve their models 

based on the data while preserving customers’ privacy (Nguyen et al., 2021). Likewise, in the 

context of smart devices, it hinders user activity data to promote privacy in the 

recommendation engines in smart devices and other personalization techniques (Chen et al., 

2020). Nonetheless, the major constraint in deploying Differential Privacy is the way of 

optimally partitioning the privacy-sensitivity and performance-relevance spectrum. High 

noise levels reduce the performance of the model, and so, fine-tuning is crucial to return 

utility (Sattler et al., 2019). 

2.2 Homomorphic Encryption (HE) 

Homomorphic Encryption is a cryptographic technique that includes the capability to 

compute on encrypted data securely. While most approaches involve decrypting data before 

computation, HE means that the data does not have to be decrypted for computation to occur 

(Reisizadeh et al., 2020). Of particular importance in federated learning is this property 

because data that is normally sensitive has to be processed collectively (Zhang et al., 2021). 

In healthcare, Homomorphic Encryption allows statistical data of patients’ records in 

different institutions to be added together so results indicating prognosis of patient or disease 

pattern, etc, can be obtained without revealing individual patients’ data (Luo et al., 2021). In 

finance, for instance, it allows encrypted training of machine learning models on the financial 

data while allowing institutions to exchange encrypted model updates rather than the data. For 

smart devices, HE allows computations in IoT systems and, at the same time, keeps data 

locally in each device while helping to create global models (Zhu, Zhou, & Xu, 2021). 

Although Homomorphic Encryption provides strong and flexible security, it comes with a 

high computational expense. The high requirement of computational power and relatively 

longer time for computation may curtail its usability in real-time or constrained environments 

(Mangal et al., 2023). 
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2.3 Secure Multi-Party Computation (SMPC) 

SMPC or Secure Multi-Party Computation is a cryptographic method for carrying out 

computations where multiple parties possess data, but they all compute a joint function on it 

without each of the inputs being visible to the others. This approach is most suitable in 

situations where one party cannot be relied upon to manage full data. 

In healthcare, SMPC assists multiple hospitals in employing cooperative diagnostic tools 

by enabling them to perform computations on the collective SMs model without sharing the 

patient-level data. For example, it is possible for different institutions to collaboratively 

develop an AI system for disease prediction without compromising on records. In the 

financial sector, it allows risk assessment of many separate institutions that combine advice 

and information without revealing individual data. For smart devices, SMPC keeps user-level 

data safe and allows devices to learn from each other’s information while keeping it secret. 

However, high communication overhead and the necessity of coordinating all parties that join 

SMPC pose major issues for the further development of the protocol. 

2.4 Federated Analytics and Pseudonymization 

Federated analytics and pseudonymization both focus on obscuring and disguising data 

insights to prevent the reverse engineering of data for identification purposes. These methods 

help ensure the anonymity of sensitive information while still enabling data analysis by 

replacing personal identifiers with pseudonyms and aggregating numerical data. In healthcare, 

it improves genomic data through the centralization of de-identified data from diverse clinical 

care sites on patients. It ensures that multiple parties can have a look at genetic diseases 

without having access to other genomic sequences. In finance, Pseudonymization is used for 

maintaining correlation for trend analysis for market prediction that would involve later 

linking, while institutions can model finance without sharing customer data. For smart 

devices, it protects user-level data contribution to shared learning processes that preventing 

tracking of the individual device activity. However, the viability of Pseudonymization is 

based on trust in the aggregators as well as the efficacy of the anonymization processes. 

Insecure pseudonymization means that a greater number of data subjects can be easily 

identified from the data, which is an invasion of privacy. 

Results  

Comparative Analysis of Privacy Techniques 

The table below provides a detailed comparison of the strengths, challenges, and applications 

of these privacy-enhancing techniques. A tick (✓) indicates a positive attribute, while a cross 

(×) highlights a limitation. 



Journal of Information Technology Management, 2025, Vol. 17, Special Issue, 51 

 

https://jitm.ut.ac.ir/ 

Table 3. Comparison Analysis of Privacy Techniques 

Technique Strengths Challenges Healthcare Finance 
Smart 

Devices 

Differential Privacy 
✓ Strong theoretical 

guarantees 
× Potential accuracy 

loss 
✓ ✓ ✓ 

Homomorphic 

Encryption 

✓ Secure 

computation on 

encrypted data 

× High computational 

demands 
✓ ✓ ✓ 

Secure MPC 
✓ High security for 

collaborative tasks 
×Communication 

overhead 
✓ ✓ ✓ 

Pseudonymization 
✓ Simplicity and 

scalability 
×Risk of re-

identification 
✓ ✓ ✓ 

The options presented and discussed in this analysis show the best and worst of specific 

approaches to privacy for federated learning systems. Each of the methods has its special 

characteristics and strengths; however, the choice of the method directly depends on the 

features of the application domain. For future work, it is essential to develop a blend of these 

techniques to eliminate respective deficits and provide a strong and elastic privacy solution 

for FL. 

Efficiency Enhancement Techniques 

One of the most important requirements of FL systems is efficiency since computation 

becomes limited, communication is expensive, and clients may have differing capabilities. 

Some of the advanced techniques that have been used in order to improve efficiency in FL 

include the following. They are model compression, communication-efficient algorithms, 

adaptive federated optimization, and integration of Edge AI. These are described in this 

section together with examples of their usage, and the possibility of redesigning FL systems. 

Here is a detailed tabular comparison of efficiency enhancement techniques in federated 

learning using tick (✓) and cross (×) symbols to indicate their suitability for specific metrics 

and applications: 

Table 4. Comparison of efficiency enhancement techniques 

Technique 
Communication 

Overhead 
Computational Cost Scalability Deployment Ease 

Model 
Compression 

× × ✓ ✓ 

Communication-

Efficiency 
✓ ∼ (Moderate) ✓ ✓ 

Adaptive 

Optimization 
∼ (Moderate) ∼ (Moderate) ✓ ∼ (Moderate) 

Edge AI 

Integration 
✓ ✓ × ✓ 

Model compression raises specific concerns, such as communication overhead and 

computational cost. Additionally, it often requires pre-processing, which may lead to some 
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loss of accuracy. Nevertheless, it offers significant advantages in terms of scalability and 

extensibility, and its ease of implementation makes it particularly suitable for organizations 

with limited resources. Communication efficiency, on the other hand, outperforms other 

PGAS metrics by significantly reducing communication overhead while maintaining good 

scalability and ease of deployment. Nevertheless, it has a relatively reasonable time 

complexity, and it can only be regarded as middle-range, which should be used and 

implemented methodically and with due measure. Adaptive optimization imagery bears 

reasonable scalabilities, and the system performs efficiently on various datasets and clients. 

However, it provides moderate computational cost, communication overhead, and ease of 

deployment, in which optimization is possible. Thus, the integration of edge AI is 

distinguished by reducing the communication overhead and improving the level of 

deployment ease due to the data’s ability to be processed locally. It also has a low 

computational cost for its operation. However, its scalability is limited, as edge devices often 

struggle to manage large, distributed environments efficiently. 

1. Model Compression 

The majority of neural network-based models for machine intelligence must go through 

model compression methodologies to minimize their size for efficient training and 

deployment. These techniques work to realize compression by reducing the probability model 

space and any redundancy. Pruning eliminates useless parameters within the model, thus 

decreasing the number of calculations needed without considerable degradation of 

performance. This process decreases the model parameter precision, which in turn minimizes 

memory and computational usage. Knowledge distillation can be described as fine-tuning 

lightweight models using information derived from larger trained models. In the healthcare 

context, model compression makes tasks, including medical image analysis, less demanding 

computationally and thus deployable on less capable platforms. In finance, compressed 

models provide a means of optimizing fraud detection systems for high-speed, low-latency 

responses. In the case of optimizing for models of smart devices, the act of compression 

implies that they have to fit into the restricted memory and processing power of mobile 

phones and IoT systems. 

2. Communication-Efficient Algorithms 

Inter-client or inter-server coordination is another major FL issue: coordination of 

communicating model updates between clients and servers can put overwhelming pressure on 

bandwidth resources and slow down training. To overcome this, communication-efficient 

algorithms minimize the amount and rate of information exchanged. The Gradient 

sparsification means that during the training process, only the greatest gradients are 

transferred. Federated Averaging (FedAvg) only requires the server to aggregate the local 

model updates; thus, fewer communication rounds are needed for convergence. Thus, 
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asynchronous updates enable the clients to update independently with no regard to 

synchronization with the server, which advances the training progress. In healthcare, these 

algorithms accelerate the federated learning for medical diagnosis as the training delay is 

effectively shortened. They extend such applications in finance as real-time fraud detection 

models, by providing quick data consolidation and decision-making. For smart devices, 

communication-efficient algorithms support responsive learning, particularly by enabling 

rapid updates to recommendations. 

3. Adaptive Federated Optimization 

The inherent non-IID data and diverse client devices give rise to novel optimization strategies 

in FL. These practices make it possible to ensure that the global model will run properly on 

different client platforms. Other methods, like FedProx and adaptive learning rates, are able to 

alter contributions from different clients by optimizing the process. In healthcare, adaptive 

optimization means that the control is tuned to achieve stable prediction or diagnosis 

performance no matter how the patients’ data changes in terms of distribution. In finance, it  

helps institutions with different characteristics of data to combine efforts in the system. In the 

case of smart devices, adaptive optimization uses individual data patterns to optimize the 

learning process for individual users effectively. 

4. Edge AI Integration 

FL is introduced together with edge AI that allows for the processing and inference on the 

device. Edge AI minimizes latency, improves privacy, and utilizes less amount of bandwidth 

since computations are done on the edge. In healthcare, edge AI makes real-time diagnostic 

evaluations through a federated model at the edges for wearable health monitoring. In finance, 

it facilitates local credit rating and evaluation, not requiring clearing at the center. Edge AI in 

smart devices allows for instantaneous personalization, as well as automation within an IoT 

setting for users. The heatmap provides a visual representation of the performance of various 

efficiency techniques used in federated learning across four key metrics, namely 

communication overhead, computation complexity or time consumption, scalability, and 

global deployment convenience. Each technique is represented by a grade from 1 to 5, where 

darker shades represent strength or excellent performance while light shades depict areas of 

weakness. Deployment Ease and Scalability are easy, and Model Compression gets an 

impressive 5 for the former and 4 for the latter, showing it can readily be applied where there 

is a limitation in the available resources. Yet it has limitations in communication overhead 

and computational complexity, rated 2 and 1, respectively, suggesting high computational 

demands and communication overhead when implemented. The class of Communication-

efficient algorithms achieved the highest score of 5 in the ability to minimize the degree of 

communication used and 4 in scalability, as well as deployment ease. Their performance in 

computational cost is moderate, with a computed score of 3, which indicates that great caution 
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should be taken while optimizing. AOC is the best scheme, attaining a score of 5 in 

scalability, implying that the adaptive optimization technique can well cope with 

heterogeneous data distributions. Intermediate numbers in computational cost and 

communication overhead scores, as well as in relative ease of deployment, suggest moderate, 

but by no means outstanding, performance in these regards. 

 

 

Figure 2. Comparison of Efficiency Techniques 

Hybrid Techniques for Privacy and Efficiency 

Since no single method of either privacy or efficiency can fully solve the problem while the 

others can, the best way to achieve both goals is to combine them into hybrid techniques to 

create sound and efficient federated learning (FL) systems. This section explores two 

significant hybrid approaches: Split Learning and Personalized Federated Learning. 

1. Split Learning 

Split Learning divides the model into two segments: client and server modules, such as the 

Server Side Include, or SSI. Some data manipulations are done on the client side; the other 

computations are done on the server side. This division decreases the pressure on the client’s 

device and decreases data openness by restricting the aspects provided to the server. Some of 

the use cases of Split Learning include PHI protection during collaborative learning in 

healthcare, protection of financial data during collaborative learning in finance, etc. It also 

enhances low-latency services in smart devices by minimizing computations to other gadgets 



Journal of Information Technology Management, 2025, Vol. 17, Special Issue, 55 

 

https://jitm.ut.ac.ir/ 

and delay periods. For example, in the case of mobile wearables, only basic analysis might be 

carried out on the device while just sending selected parameters to the server. 

2. Personalized Federated Learning 

Global models to each client’s needs is what Personalized Federated Learning does, which 

helps to overcome the problem of heterogeneity. This approach enhances model relevance, 

helps to exclude pointless computations, and strengthens generalization across differing sets 

of data. In healthcare, where everything is getting centralized, it helps in recommending an 

individually tailored treatment plan based on the patient’s data collected on a global level. In 

finance, personalized FL promotes financial planning to meet the needs of different 

institutions and customers, as the model is developed to suit different audiences. For smart 

devices, user experience is thus to provide personalized recommendations while boosting the 

functionality of IoT applications such as smart home technology and wearables. 

Applications of Enhanced Federated Learning 

These improved techniques mentioned earlier are revolutionizing several fields through 

secure, efficient, and scalable FL systems. 

1. Healthcare 

In healthcare, the medical image analysis based on joint diagnostics enables training of 

models based on big data without disclosing patients’ records between hospitals. Through 

federated learning models of drug discovery, the identification of possible drug candidates is 

enhanced, and the privacy of the patient’s data is protected. Moreover, FL can contribute to 

privacy-preserving genomics and disease prediction to allow multi-institutional collaboration 

for genetic study data. 

2. Finance 

They work in finance to boost fraudulent detection through shared learning among 

institutions, since security against fraudulent people is well enhanced through the FL system. 

Personal credit scoring: A Large amount of credit data is analyzed locally, and individual 

credit scoring can be given without transmitting delicate financial details. FL also provides an 

effective means for distributing market trend prediction responsibility to different market 

areas in order that institutions can forecast economic trends. 

3. Smart Devices 

Smart devices also transform applications like smart home automation since user data is 

processed locally, thus improving privacy. Focused personalization in wearable technology 
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helps the targeted person adjust to personalized suggestions. Effective federated learning 

approaches enhance scalability in IoT networks and ensure secure D2D connections. 

Table 5. Comparative Table for Hybrid Techniques 

Technique Strengths Challenges Applications 

Split Learning 
Reduces client computation 

and data exposure 
Requires high 

coordination 
Healthcare, Finance, 

Smart Devices 
Personalized Federated 

Learning 
Improves model relevance and 

adaptability 
May increase complexity 

in updates 
Healthcare, Finance, IoT 

 

 

Figure 3. Computation load distribution 

 

Figure 4. Model accuracy vs data heterogeneity 
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Figure 5. FL Application distribution 

Graph 1: Split Learning Performance Overhead 

It aims to show the share of the computation that is performed by clients and servers in Split 

Learning against to the traditional federated learning (FL) approach. By applying Split 

Learning, the end user has lesser amount of calculations to perform while the computational 

work is scaled up on the server. 

Tabular Data: Computational Load Distribution 

Graph 1. Personalized FL - Model Accuracy vs Data Heterogeneity 

Participant Split Learning (%) Traditional FL (%) 
Client A 30 70 
Client B 35 80 
Client C 40 75 
Server 90 20 

Tabular Data: Accuracy vs Heterogeneity 

Graph 2. Applications Distribution 

Heterogeneity Level Personalized FL Accuracy (%) Non-Personalized FL Accuracy (%) 
0.0 100 100 
0.2 98 96 
0.4 96 92 
0.6 94 88 
0.8 92 84 
1.0 90 80 

In this pie chart, these are the percentages of federated learning applications where the 

three sectors: healthcare, finance, and smart devices. Healthcare has the greatest share, then 

finance, and afterwards smart devices. 
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Tabular Data: FL Applications 

Application Domain Percentage (%) 
Healthcare 40 

Finance 35 
Smart Devices 25 

Discussion 

Challenges and Future Directions 

Scalability 

One of the biggest challenges of Federated Learning (FL) is the scalability. Contemporary FL 

systems have to coordinate millions of devices placed in decentralized settings with different 

computational capabilities and connection quality. Sustaining such a large ecosystem requires 

a tight coupling of communication protocols to reduce delay, learning algorithms to address 

resource use, and structures capable of handling heavy parallelism. Scalability must be a top 

priority in order to make FL systems remain efficient and coherent as more devices join the 

systems. 

Heterogeneity 

One major challenge in FL systems is heterogeneity, as the data at clients and the client 

devices themselves may differ greatly. The data collected from various devices is not 

identically distributed, thus it brings a pull of bias that challenges the development of global 

models. Moreover, devices span the spectrum of computing in terms of memory and network 

capabilities, from constrained devices to highly capable ones. This results in an unbalanced 

learning, which requires the use of adjustive measures to achieve a fair contribution amongst 

the clients as well as fair and productive distribution of work. 

Regulation Compliance 

Another important issue here associated with FL systems is the ability to follow data 

protection laws between different legal systems. Policies and laws like the General Data 

Protection Regulation (GDPR) in Europe and the Health Insurance Portability and 

Accountability Act (HIPAA) in the United States have constraints regarding data utilisation 

and storage. In their training processes, FL systems must be able to meet these laws’ 

requirements in addition to being transparent and auditable. This is even more daunting, 

especially within industries such as healthcare and the financial industry, where the regulatory 

requirements are very stringent for any organization that fails to meet them and then faces 

severe consequences. 

 



Journal of Information Technology Management, 2025, Vol. 17, Special Issue, 59 

 

https://jitm.ut.ac.ir/ 

Future Research Directions 

To address these issues, other future work should aim at creating new combined strategies 

which incorporate both privacy protection and improved efficiency. For instance, the conjoint 

use of differential privacy and model compression can produce high levels of security with 

low costs in terms of computation and communication. Self-assessment frameworks are also 

needed to perform similar comparisons across various applications and FL settings 

systematically to assess FL systems objectively. These frameworks can determine different 

areas that take a long time to perform and set fundamental criteria for FL. 

Furthermore, incorporating FL with new generation technologies provides constructive 

solutions. The presented FL approach based on blockchain has the potential to more securely 

and transparently manage model updates and aggregation than using traditional 

methodologies. Quantum computing has the potential to improve computational capabilities 

and introduce enhanced security measures for data protection. With these innovations, FL 

systems should be able to address emerging challenges, making them more suitable for wide 

deployment across diverse domains requiring scalability, flexibility, and security.  

Conclusion 

Improving privacy and reducing computation overhead are critical to the achievement of FL’s 

potential in healthcare, financial, and intelligent devices’ applications. These regions require 

strong measures to help protect data from unauthorized access, meet legal requirements, and 

ensure optimal resource use, where privacy preservation and methodical performance 

enhancement remain crucial. Sophisticated approaches, including differential privacy, provide 

tremendous data security, and other techniques like model compression and adaptive 

optimization make computation and communication faster and efficient. Altogether, these 

approaches tackle the critical issues associated with FL so as to facilitate the functionality of 

large FL designs. 

This study aims to present these techniques and evaluate their relevance and impact on 

enhancing FL systems. The analysis of the transitional approaches and the implementation of 

other applicable new technologies also contribute to future developments in FL, making it a 

foundation for effective protected collaboration in learning and other fields. 
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