Abbasi, F., Khadivar, A., & Yazdinejad, M. (2019). A Grouping Hotel Recommender System Based on Deep Learning and Sentiment Analysis.
Journal of Information Technology Management, 11(2), 59-78.
https://doi.org/10.22059/jitm.2019.289271.2402
Al-Smadi, M., Qawasmeh, O., Al-Ayyoub, M., Jararweh, Y., & Gupta, B. (2018). Deep Recurrent neural network vs. support vector machine for aspect-based sentiment analysis of Arabic hotels’ reviews.
Journal of Computational Science, 27, 386-393.
https://doi.org/https://doi.org/10.1016/j.jocs.2017.11.006
Al-Smadi, M., Talafha, B., Al-Ayyoub, M., & Jararweh, Y. (2019). Using long short-term memory deep neural networks for aspect-based sentiment analysis of Arabic reviews.
International Journal of Machine Learning and Cybernetics, 10(8), 2163-2175.
https://doi.org/10.1007/s13042-018-0799-4
Chapman, P., Clinton, J., Kerber, R., Khabaza, T., Reinartz, T., Shearer, C., & Wirth, R. (2000). CRISP-DM 1.0 Step-by-step data mining guide.
Dami, S., & Mohammadi, S. (2017). Opinion mining in tourism with unsupervised learning. First National Conference on Computer Engineering and Information Technology, Sepidan.
Dang, N. C., Moreno-García, M. N., & De la Prieta, F. (2020). Sentiment Analysis Based on Deep Learning: A Comparative Study. Electronics, 9(3).
Dhurve, R., & Seth, M. (2015). Weighted Sentiment Analysis Using Artificial Bee Colony Algorithm.
Haghighi, M., Dorosti, A., Rahnama, A., & Hoseinpour, A. (2012). Evaluation of factors affecting customer loyalty in the restaurant industry.
African Journal of Business Management, 6.
https://doi.org/10.5897/AJBM11.2765
Kamalpour, M., Rezaei Aghdam, A., Xu, S., Khani, E., & Baghi, A. (2017). Uncovering Hotel Guests Preferences through Data Mining Techniques.
Karimi, F., Khadivar, A., & Abbasi, F. (2024). Classification of user Comments on Virtual Reality Technology by Topic Modeling.
Business Intelligence Management Studies, 12(47).
https://doi.org/10.22054/ims.2023.74147.2342
Kharadi, B., & Patel, K. (2017). Opinion Mining of Restaurant Review by Sentiment Analysis Using SVM.
Khorsand, R., Rafiee, M., & Kayvanfar, V. (2020). Insights into TripAdvisor's online reviews: The case of Tehran's hotels.
Tourism Management Perspectives, 34, 100673.
https://doi.org/10.1016/j.tmp.2020.100673
Kulesza, T., Amershi, S., Caruana, R., Fisher, D., & Charles, D. (2014). Structured labeling for facilitating concept evolution in machine learning.
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Toronto, Ontario, Canada.
https://doi.org/10.1145/2556288.2557238
Li, J. B., & Yang, L. B. (2017, 4-6 Nov. 2017). A Rule-Based Chinese Sentiment Mining System with Self-Expanding Dictionary - Taking TripAdvisor as an Example. 2017 IEEE 14th International Conference on e-Business Engineering (ICEBE).
Ma, Y., Peng, H., & Cambria, E. (2018). Targeted Aspect-Based Sentiment Analysis via Embedding Commonsense Knowledge into an Attentive LSTM.
Mäntylä, M. V., Graziotin, D., & Kuutila, M. (2018). The evolution of sentiment analysis—A review of research topics, venues, and top cited papers.
Computer Science Review, 27, 16-32.
https://doi.org/10.1016/j.cosrev.2017.10.002
Nguyen, H., & Shirai, K. (2018, 1-3 Nov. 2018). A Joint Model of Term Extraction and Polarity Classification for Aspect-based Sentiment Analysis. 2018 10th International Conference on Knowledge and Systems Engineering (KSE).
Noroozi, M., Khadivar, A., & Abbasi, F. (2023). Modeling and predicting mobile phone purchase intention of Twitter users based on sentiment analysis. Modern Researches In Decision Making, 8(1), 91-112.
Park, S. B., Jang, J., & Ok, C. M. (2016). Analyzing Twitter to explore perceptions of Asian restaurants.
Journal of Hospitality and Tourism Technology, 7(4), 405-422.
https://doi.org/10.1108/JHTT-08-2016-0042
Qiang, Y., Li, X., & Zhu, D. (2020). Toward Tag-free Aspect Based Sentiment Analysis: A Multiple Attention Network Approach.
Roshanfekr, B., Khadivi, S., & Rahmati, M. (2017). Sentiment analysis using deep learning on Persian texts. 2017 Iranian Conference on Electrical Engineering (ICEE), 1503-1508.
Sahar, N. u., Sohail Irshad, M., & Adnan Khan, M. (2019). Bayesian Sentiment Analytics for Emerging Trends in Unstructured Data Streams.
EAI Endorsed Transactions on Scalable Information Systems, 6(22), e5.
https://doi.org/10.4108/eai.13-7-2018.159355
Shafique, U., & Qaiser, H. (2014). A Comparative Study of Data Mining Process Models (KDD, CRISP-DM and SEMMA). International Journal of Innovation and Scientific Research, 12, 2351-8014.
Singh, N. K., Tomar, D. S., & Sangaiah, A. K. (2020). Sentiment analysis: a review and comparative analysis over social media.
Journal of Ambient Intelligence and Humanized Computing, 11(1), 97-117.
https://doi.org/10.1007/s12652-018-0862-8
Tan, S., Wang, Y., & Cheng, X. (2008). Combining learn-based and lexicon-based techniques for sentiment detection without using labeled examples.
Proceedings of the 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Singapore, Singapore.
https://doi.org/10.1145/1390334.1390481
Vu, H. Q., Li, G., Law, R., & Zhang, Y. (2017). Exploring Tourist Dining Preferences Based on Restaurant Reviews. Journal of Travel Research, 58(1), 149-167. https://doi.org/10.1177/0047287517744672
Yu, B., Zhou, J., Zhang, Y., & Cao, Y. (2017). Identifying Restaurant Features via Sentiment Analysis on Yelp Reviews.
Yue, L., Chen, W., Li, X., Zuo, W., & Yin, M. (2019). A survey of sentiment analysis in social media.
Knowledge and Information Systems, 60(2), 617-663.
https://doi.org/10.1007/s10115-018-1236-4
Zhang, Z., Ye, Q., Zhang, Z., & Li, Y. (2011). Sentiment classification of Internet restaurant reviews written in Cantonese.
Expert Systems with Applications, 38(6), 7674-7682.
https://doi.org/10.1016/j.eswa.2010.12.147
Zuheros, C., Martínez-Cámara, E., Herrera-Viedma, E., & Herrera, F. (2021). Sentiment Analysis based Multi-Person Multi-criteria Decision Making methodology using natural language processing and deep learning for smarter decision aid. Case study of restaurant choice using TripAdvisor reviews.
Information Fusion, 68, 22-36.
https://doi.org/10.1016/j.inffus.2020.10.019