

Investigating the Role of Code Smells in Preventive Maintenance

Junaid Ali Reshi

*Corresponding author, PhD Candidate, Department of Computer Science and Technology,

Central University of Punjab, Bhatinda, Punjab, India. E-mail: jreshi14@gmail.com.

Satwinder Singh

Assistant Prof., Department of Computer Science and Technology, Central University of

Punjab, Bhatinda, Punjab, India. E-mail: satwindercse@gmail.com

Abstract

The quest for improving the software quality has given rise to various studies which focus on

the enhancement of the quality of software through various processes. Code smells, which are

indicators of the software quality have not been put to an extensive study for as to determine

their role in the prediction of defects in the software. This study aims to investigate the role of

code smells in prediction of non-faulty classes. We examine the Eclipse software with four

versions (3.2, 3.3, 3.6, and 3.7) for metrics and smells. Further, different code smells, derived

subjectively through iPlasma, are taken into conjugation and three efficient, but subjective

models are developed to detect code smells on each of Random Forest, J48 and SVM machine

learning algorithms. This model is then used to detect the absence of defects in the four

Eclipse versions. The effect of balanced and unbalanced datasets is also examined for these

four versions. The results suggest that the code smells can be a valuable feature in

discriminating absence of defects in a software.

Keywords: Preventive maintenance, Code smells, Machine learning, Random forest.

DOI: 10.22059/jitm.2019.274968.2335 © University of Tehran, Faculty of Management

Investigating the Role of Code Smells in Preventive Maintenance 42

Introduction

In current times, technology plays an important role in our day to day lives. In every sphere of

life, we use gadgets to make the work easier and faster. We use smart phones, smart watches,

heartbeat trackers, and many personified gadgets. These gadgets and devices, apart from the

hardware need software to work perfectly. In research and business, we use a variety of

software for data analysis, account management, project management and human resource

management etc. In short, we heavily depend on software for almost all the automations in

our lives. These software sometimes do not behave in order and can be a huge pain for all of

us. In order to maintain these software, there are various people working constantly and many

frameworks have been built for its maintenance. This has given rise to various standards and

practices for software maintenance. ISO/IEC 14764:2006(E)1 and IEEE Std 14764-20062

define three types of software maintenance: Corrective, Preventive, Adaptive, and Perfective

maintenance. Preventive maintenance deals with tackling potential errors/defects/bugs in a

software. One of the sub-parts of preventive maintenance is software defect prediction.

Software defect prediction involves predicting probable defective components in a software

much before they cause any problem. Various efforts have been made to predict defects in

software, so as to make the product robust and reducing corrective maintenance. There have

been various approaches in determining the defects in software. Various aspects of software

maintenance have always been researched and put to experimentation so as to improve

software maintenance. Some of these methods rely on statistical measures while others

employ software metrics thresholds (Kapila & Singh, 2013; Catal, 2011). This has resulted in

the evolution of various software metrics, their treatment, and the development of code smells

(Singh & Kaur, 2017). One of the emerging field is the application of Machine learning

algorithm to the problem of fault prediction.

The field of machine learning is an emerging and fascinating field of research, which

focuses on the improvement of perception, cognition and action of computers through

continuous learning and evolving with experience. It is a field, which makes machines

efficient enough to handle large amounts of diverse information of various disciplines for

making decisions, providing estimates and predictions, each with applied knowledge of the

field that has previously been learned. Supervised learning is the application of machine

learning algorithms to learn a pattern on the basis of already available data about a

phenomenon, referred to as training, and then make predictions about a scenario. There are a

lot of applications of the machine learning techniques. Among other fields, software

engineering also uses the services of machine learning algorithm to augment various activities

of software maintenance, the defect prediction being one of them (Lessmann, Baesens, Mues,

& Pietsch, 2008).

 ـــ
1. https://www.iso.org/obp/ui/#iso:std:iso-iec:14764:ed-2:v1:en

2. https://standards.ieee.org/standard/14764-2006.html

Journal of Information Technology Management, 2018, Vol.10, No.4 43

The code smells have been found to be efficient descriptors of software code quality

(Yamashita & Moonen, 2013). Code smells have been described in various literatures and

have been constantly a matter of research. Various researchers have defined code smells and

their detection strategies (Singh & Kaur, 2017).The pioneering work in the field of code

smells has been done by Martin Fowler who has described 22 types of code smells and the

techniques for their detection (Fowler, Beck, Brant, Opdyke, & Roberts, 2002). Code smells

have not yet been extensively used as a factor in determining the presence or absence of

defects in a software.

This study takes a step forward to look for the possible ways to improve and augment

the process of defect prediction through the aid of software code smells. The study is based on

the hypothesis that the code smells have a definitive role in the process of defect prediction

and that the absence of code smells can be utilised as a factor for in the process of defect

prediction through machine learning.

Data Extraction and Analysis

The methodology employed for the task of predicting non-faulty classes contains essential

data mining task as well. All data mining tasks require some of the data pre-processing

techniques for the data to be in shape so that it can be fed to a machine learning algorithm.

We carried out some basic processes to suitably prepare data for the machine learning

algorithms. The processes that we carried out are listed as under:

Dataset Selection: Dataset selection is the important task in the problem of machine learning.

Classification too performs better if the dataset is more relevant to the problem. The more

optimal the database, the better the accuracy and less the time and resources consumed. The

dataset selected in the case was relevant to the software as previous studies have shown the

object oriented metrics data to be efficient in the detection of the defects and metrics as

depicters of software quality is a well-established fact (Catal, 2011).

Source code selection: The basic process of a study is always determined by the type of data

to be studied. The type of data determines the validity of inferences and their extensions. For

this study, we choose Eclipse framework which is a very popular object oriented software.

The object oriented software are extensively found in every field of application. The ease and

applicability of object oriented framework has made object oriented software the most

popular line of software which are in vague as well. The results inferred from the study of this

software will be extensible to the software products which are similar in nature. As Eclipse is

an industry sized and having similar characteristics as that of industry level software so we

used it for the analysis so that the inferences could be extended to industry level software. The

platform in which the software is written in Java, which is the widely used language in the

development of software. The Eclipse software is open source software and it allows open

Investigating the Role of Code Smells in Preventive Maintenance 44

access to its bug repository. This was another reason to select Eclipse for the analysis as the

work can be easily reproducible and verifiable. There have been many studies conducted on

the Eclipse software that make it a kind of standard to be analysed. In addition, the software

being open source will contribute healthily towards research on the open source platform,

which will make the research replicable and inferable and can help in setting benchmarks. The

information pertaining to the source code selected is as:

Table 1. Eclipse Source Code Information

Build name Build Date

Eclipse 3.2 Thu, 29 Jun 2006

Eclipse 3.3 Mon, 25 Jun 2007

Eclipse 3.6 Tue, 8 Jun 2010

Eclipse 3.7 Mon, 13 Jun 2011

Data acquisition and compilation

The data acquisition is another important aspect of the process. The metrics and the smell data

were obtained from Understand and iPlasma tools. The bug data was acquired from official

bug repository for Eclipse, Bugzilla1.

Metrics extraction

Metrics, as fault depicters have been used in various studies. The metric values have been

utilised to train various defect prediction models. The defect prediction models have proven to

be efficient as concluded by various studies (Cartwright & Shepperd, 2000; Catal, 2011; Hall,

Beecham, Bowes, Gray, & Counsell, 2011).

The metrics extraction was carried out by a static code analyser tool called as

Understand™. The source code was analysed for the object oriented metrics. The metrics that

were taken into consideration are as under:

 LCOM (Percent Lack of Cohesion)

 IFANIN (Count of Base Classes)

 RFC (Count of All Methods)

 DIT (Max Inheritance Tree)

 NIV (Count of Instance Variables)

 NIM (Count of Instance Methods)

 CBO (Count of Coupled Classes)

 WMC (Count of Methods)

 NOC (Count of Derived Classes)

 ـــ
1. https://bugs.eclipse.org

Journal of Information Technology Management, 2018, Vol.10, No.4 45

Bug association and compilation

The association of bugs with the metrics file was carried out by examining the online bug

repository, Bugzilla, for the purpose. The bugs were manually sort out by a team of Scholars

of masters’ level who had an adequate knowledge about object oriented concepts and were

able enough to read and understand the code. The products that were analysed for the

presence of bugs were Eclipse JDT and PDE. The parameters that were used to search the

bugs are:

 Severity: blocker, critical, major, normal, minor, trivial

 Priority: P1, P2, P3, P4, P5

 Resolution: Fixed, Invalid, Wontfix, Duplicate, Worksforme, Moved, Not_Eclipse

 Classification: Eclipse

 OS: All

 Hardware: All

 Product: JDT, PDE

 Versions:3.2,3.3,3.6,3.7

The most important criteria that were followed while associating the bugs were:

 The Bug reports containing patches were only considered.

 The patches were examined carefully and the affected class was identified through the

manual patch analysis.

The Bug reports, which did not have a clear distinction of the presence of a bug within a

class were not be considered. This means that if there is any ambiguity in associating a bug

with a particular class, although the bug is present, the bug was not filed in the dataset

created.

If there were one or more than one bugs in a particular class, the class was considered as

faulty. In the association of the bugs, only the bugs which had been resolved were considered.

This is because, many a times a bug is in its initial stage of resolution and is marked as a bug.

But, on the later stage, either that is considered as not bug or duplicate which means that it

was not a different bug or it was not a bug altogether. Thus, marking it as bug in the database

can lead to a false bug. On the other hand, the bugs marked as resolved are confirmed bugs

whose status as a bug would not change. Same strategy has been implemented in the creation

of promise data repository (Zimmermann, Premraj, & Zeller, 2007).

Smell detection and association

Code smell is a subjective property of a code which can be interpreted differently by different

researchers and tools. Although there is no clear cut definition of code smells, but the code

smell definitions do not vary too much as the standard for the code smells have been defined

by fowler and implemented by some researchers (Fowler et al., 2002). There have been some

Investigating the Role of Code Smells in Preventive Maintenance 46

tools which have been used by the researchers and are established as a standard in the field.

One such standard tool is iPlasma which is freely available and is one of the famous code

smell detectors (Fontana, Mäntylä, Zanoni, & Marino, 2016).

The code smells to be considered were chosen on the basis of the literature survey and

the ease of availability of the analysis of the smells through open source platform. The code

smells were obtained from iPlasma platform and they were associated with the metrics files

which were obtained from iPlasma and Understand tool as already defined.

Four class level and three method level code smells were used to create the code smell

dataset. They were then consolidated to from a single dataset which simply indicated whether

a class is smelly or not, based on the presence or absence of these smells.

Table 2. Code Smells extracted from the Source code

Method level Code Smells Class level Code smells

Brain method God Class (God Class + Brain Class)

Shotgun Surgery Data Class

Feature Envy Schizofrenic Class

 Refused Bequest

The method level smells were not associated at the method level but rather at class level

as the metrics computed were of the class level and not the method level.

Data Assessment

The data thus obtained from the bug repository was assessed and validated for its correctness.

A team of 6 M.Tech level students was deployed for the purpose.

After the mapping of the bugs with the classes was done with the parameters mentioned

above, and re-validated within the team, the resultant files contained the distribution of the

defects per version as:

Table 3. Distribution of defective and non-defective classes in dataset

Source Code Total No of Bugs filed Defective Classes Non Defective Classes

Eclipse 3.2 839 615 4095

Eclipse 3.3 1201 733 4460

Eclipse 3.6 1143 700 5273

Eclipse 3.7 963 502 5465

Journal of Information Technology Management, 2018, Vol.10, No.4 47

For the smells, the data was also validated and classes that were resolved by iPlasma

were checked with that of the ones given by Understand. The results of the extraction of the

consolidated code smells prevalence per version, resolved at the class level is as under:

Table 4. Distribution of the code smells in the original dataset prepared

Source Code Smelly Classes Non Smelly Classes Total Classes

Eclipse 3.2 1689 3020 4718

Eclipse 3.3 1633 3559 5192

Eclipse 3.6 2122 3850 5972

Eclipse 3.7 2114 3852 5966

Data Cleansing

During the mapping of the data, some of the classes were not resolved properly or were

redundant in the already prepared data. In this step, the data was examined for the corrupt,

incomplete and inaccurate data. The data was thus refined as some of the cells were

consolidated while others were deleted and a lot of cells got further refined.

Data Transformations

The necessary data transformations were carried out in the data so that the algorithms can be

applied efficiently. As, the number of fields had different types of data, they were

homogenised and made to conform to a single standard throughout the various data files.

Although, not much data transformations were needed, yet it was an important step to weed

out any problems that could possibly hamper the efficient functioning of an algorithm.

Data Balancing

Machine learning algorithms are found to be sensitive to the data imbalance. They tend to

perform worse on the data that is not in proper ratio and skews towards a class. There are

various techniques for balancing the data. Every dataset needs analysis before choosing a

particular data balancing technique. The dataset was analysed and it was concluded that the

most suitable technique for balancing the data would be under-sampling. Only those datasets

were balanced in which the minority class was below the set threshold. The threshold that was

set as a standard was 1/3 of the total data, which means that the minority class should be at

least 1/3 of the total dataset. No specific ratio was considered as a standard for already

balanced data-sets and they were used in the original form. The majority class was reduced

proportionately through random sampling. The criteria for balancing the datasets that was

followed was one-third (1/3) positive and two-third (2/3) negative instances which is a

Investigating the Role of Code Smells in Preventive Maintenance 48

popular strategy (Gueheneuc, Sahraoui, & Zaidi, 2004). Accordingly the datasets, when

balanced, had the following prevalence:

Table 5. Distribution of defective and non-defective classes after applying under-sampling

Source Code Defective Classes Non Defective Classes

Eclipse 3.2 614 1228

Eclipse 3.3 722 1444

Eclipse 3.6 699 1398

Eclipse 3.7 501 1002

The training dataset (metrics-smell dataset) was already balanced except for one

version, which was then balanced accordingly. Subsequently, the distribution of classes in

that dataset were as under:

Table 6. Distribution of smelly and non-smelly classes after applying under-sampling

Source Code Smelly Classes Non Smelly Classes Total

Eclipse 3.2 1689 3020 4718

Eclipse 3.3 1633 3266 4899

Eclipse 3.6 2122 3850 5972

Eclipse 3.7 2114 3852 5966

Selection of Algorithms

Algorithms are an important component of a Machine learning system. Many Algorithms

have been studied for their performances with different types of data and to different fields.

There have been various efforts to predict defects and smells using machine learning

algorithms. In this study, we use SVM, J48 and RandomForest algorithms for creating

Machine learning Models. One of the prominent benchmarking study carried out by Fontana

et al. have shown RandomForest and J48 to be in the top 10 performing classification

algorithms for smell prediction task (Fontana et al., 2016). Many other benchmarking studies

indicate these algorithms to be good performers for defect prediction as well (Lessmann et al.,

2008). Hence, Fontana et al. have also concluded RandomForest to be the best overall

performing algorithm for both defects and smells (Fontana et al., 2016).SVM, on the other

hand , has been an algorithm which tends to perform well on certain data (particularly when

feature selection is done) and does not perform well on some data.But, there has been use of

SVM for detecting antipatterns or smells (Maiga et al., 2012) and that makes it an interesting

candidate for experimentation.

Journal of Information Technology Management, 2018, Vol.10, No.4 49

Figure 1. Flow graph of the Research process

Results and Discussion

Various algorithms have been used in the previous studies to study different aspects of

software maintenance. In the area of software defect prediction, the application of machine

learning techniques for detection of the defects have been in vogue and used extensively,

Singh, Kaur, & Malhotra, 2010). In this work, we used Random forest, J48 (Weka

implementation of C4.5), and SVM for the construction of the models.

Investigating the Role of Code Smells in Preventive Maintenance 50

Smell prediction models

The creation and training of smell prediction models was done through the aid of Weka

software which is openly available. They were evaluated for their efficiency through tenfold

cross validation. Training and testing through this methodology ensures that the model is not

over-fitted by the data. The tenfold cross validation strategy divides the dataset into 10

different parts and uses the different combinations (9 for training and one for testing) of the

dataset alternatively. The cross-validation procedure is an established standard guaranteeing a

stratified sampling of the dataset and reducing the overfitting phenomenon (Bengio &

Grandvalet, 2004; Stone, 1974; Cohen & Jensen, 1997), thus providing an efficient way for

evaluating our model. Table 7 lists the various performance measures of the smell prediction

model. The smell prediction models that were formed had ROC and F-measure value of

above 90% in the detection of the smells. ROC and F-measure have been established

parameters in the evaluation of machine learning models (Provost, Tom, & Kohavi, 1998;

Kim Sang, & De Meulder, 2003).

Table 7. Performance measures of the smell prediction models

Algorithm Source Code Precision Recall F-Measure ROC

Random Forest

Eclipse 3.2 0.942 0.942 0.941 0.974

Eclipse 3.3 0.942 0.942 0.941 0.974

Eclipse 3.6 0.936 0.937 0.936 0.978

Eclipse 3.7 0.933 0.933 0.933 0.977

J48

Eclipse 3.2 0.933 0.933 0.933 0.948

Eclipse 3.3 0.933 0.933 0.933 0.948

Eclipse 3.6 0.925 0.926 0.925 0.943

Eclipse 3.7 0.924 0.924 0.924 0.940

SVM

Eclipse 3.2 0.924 0.924 0.923 0.909

Eclipse 3.3 0.924 0.925 0.924 0.901

Eclipse 3.6 0.925 0.925 0.924 0.911

Eclipse 3.7 0.925 0.925 0.924 0.910

Creation of Smell-defect models

 As we are already aware that the presence of smells is indicative of the fact that the code is

prone to defects or faults (by the definition of code smells), we train our models with the

metrics (as already defined) that are the indicators of smells to find out the absence of bugs.

The non-smelly code was examined for the absence of bugs to find out the classes which

Journal of Information Technology Management, 2018, Vol.10, No.4 51

needed less attention for maintenance (reciprocally, the classes which need more attention)

and thus dividing the burden in the developers in the same context.

The prediction of the absence of defects was carried out for each versions of the

software. The model built on the Eclipse version 3.2 was used to predict defects in the

subsequent versions (as listed in the table 4.2).The testing of the absence of bugs was done

down the release version. Exemplifying, Eclipse 3.6 trained model was used to test the data

on Eclipse 3.6 and Eclipse 3.7 only and not Eclipse 3.2 or Eclipse 3.3.

The testing of data was carried out for each of the models formed on the RandomForest,

J48 and SVM. Another testing of data was performed on the balanced datasets, wherever data

balancing was required.

The dataset preparation for SVM was a little different. Data pre-processing technique

WrapperSubsetEval with Evolutionary search was used to treat the data before creating smell

prediction models. The performance of SVM is measured on the imbalanced data as well as

the balanced and normalised data.

Random Forest based prediction Models

Random Forest is a machine learning algorithm that consists of an ensemble of simple tree

predictors, capable enough of individually producing a result on input of a set of predictor

values. In classification, the problem is deduced to a class membership problem, binary or

multi-class. The results from these simple tree predictors is in the form of class membership,

associating or classifying a set of independent predictor values with the categories of the

dependent variable. Each of these tree predictors give a response which is dependent on a set

of predictor values.

In Classification problems, Random Forest algorithm measures the average number of

votes (responses) for the correct class, exceeding the average vote for other classes in the

dependent variable through a margin function. The margin function helps us to associate a

confidence measure with the predictions that are essentially done through its help.

The non-faulty class prediction models that were based on Random Forest algorithm are

trained on the smell data of the corresponding version and tested on the defect data in order of

chronology. The performance of the models obtained are illustrated in Table 8 and figure 2.

The results obtained on the analysis of the model on different versions shows that the

performance of Random forest based Smell-defect prediction model shows some variation on

different versions of Eclipse.

As is clearly evident from the Table 8,the models based on the Random Forest

algorithm have an ROC lying in the range of 68.2 % to 80.5%.This implies that there is poor

to good perceptiveness among the different models built, in determining the absence of

defects through the Random Forest based model.

F-measure, the harmonic mean of precision and recall, also gives an indication of the

average performance of the algorithm in predicting the defects. With the values of F-measure

Investigating the Role of Code Smells in Preventive Maintenance 52

lying between 77 % and 83.6 percent, it can be concluded that the model performed well on

discriminating the non-faulty classes.

Table 8. Performance measures of Random Forest based Smell-Defect model

Smell Prediction Model Defects Predicted in Precision Recall F-Measure ROC

Eclipse 3.2

Eclipse 3.2 0.913 0.673 0.775 0.682

Eclipse 3.3 0.912 0.696 0.789 0.693

Eclipse 3.6 0.929 0.685 0.788 0.717

Eclipse 3.7 0.970 0.692 0.808 0.779

Eclipse 3.3

Eclipse 3.3 0.913 0.728 0.810 0.705

Eclipse 3.6 0.926 0.718 0.809 0.724

Eclipse 3.7 0.975 0.732 0.836 0.805

Eclipse 3.6
Eclipse 3.6 0.927 0.677 0.782 0.707

Eclipse 3.7 0.995 0.703 0.824 0.797

Eclipse 3.7 Eclipse 3.7 1.000 0.705 0.827 0.800

Figure 2. ROC curves on application of Random Forest based prediction

model for prediction of non-faulty classes in the subsequent versions.

(a)Performance of Eclipse 3.2 based prediction model. (b) Performance of

Eclipse 3.3 based prediction model. (c) Performance of Eclipse 3.6 based

prediction model. (d) Application of Eclipse 3.7 based prediction model.

Journal of Information Technology Management, 2018, Vol.10, No.4 53

After the balancing of data, Random forest algorithm based prediction models do not

show significant improvement in the prediction of defects. The performance of Random forest

based smell-defect model is given in the Table 9.

Table 9. Performance measures of Random Forest based Smell-Defect model after Data balancing

Smell Prediction Model Defects Predicted in Precision Recall F-Measure ROC

Eclipse 3.2

Eclipse 3.2 0.759 0.673 0.714 0.678

Eclipse 3.3 0.770 0.683 0.724 0.692

Eclipse 3.6 0.772 0.670 0.717 0.713

Eclipse 3.7 0.854 0.683 0.759 0.771

Eclipse 3.3

Eclipse 3.3 0.771 0.708 0.738 0.695

Eclipse 3.6 0.763 0.692 0.726 0.719

Eclipse 3.7 0.889 0.751 0.814 0.823

Eclipse 3.6
Eclipse 3.6 0.766 0.661 0.710 0.701

Eclipse 3.7 0.971 0.690 0.806 0.793

Eclipse 3.7 Eclipse 3.7 1.000 0.696 0.820 0.792

Figure 3. ROC curves on application of Random based prediction model for prediction of

non-faulty classes in the subsequent versions using balanced dataset. (a)Performance of

Eclipse 3.2 based prediction model. (b) Performance of Eclipse 3.3 based prediction

model. (c) Performance of Eclipse 3.6 based prediction model. (d) Application of Eclipse

3.7 based prediction model

Investigating the Role of Code Smells in Preventive Maintenance 54

Figure 3 is clearly illustrating the fact that the model is performing good and that the

data balancing did not significantly improve the performance of the prediction models. The

models were rather found to be very much insensitive to the amount of data imbalance present

in the original dataset.

J48 based prediction models

J48 is a Java based implementation of C4.5 algorithm in Weka, which, in essence, is an

implementation of ID3 (Iterative Dichotomiser 3) algorithm, used to generate a decision tree.

J48 is based on ID3 algorithm with some modifications, aimed at improving the

disadvantages in the original ID3 algorithm. Basically, ID3 is a decision tree algorithm which

provides the decision on the basis of the performance of attribute of a given instance in

classifying the instances present in the dataset. It also determines those values of the ranges

which give the best results in classification. In the implementation of J48 algorithm, there

have been additional changes in the original ID3 algorithm to improve its performance. Some

of the improvements are:

 The algorithm is able to handle training data with missing attribute values.

 The algorithm is able to hand different cost attributes.

 It has the capability to prune a decision tree after creating one.

 It can handle the attributes which have discrete and continuous distribution of the

values.

The models based on J48 implementation were created on the same lines as

RandomForest based models. The training was done on the smell data and the testing on the

bug data.

Table 10. Performance measures of J48 based Smell-Defect model

Algorithm Smell Prediction Model Defects Predicted in Precision Recall F-Measure ROC

J48

Eclipse 3.2

Eclipse 3.2 0.825 0.681 0.730 0.648

Eclipse 3.3 0.818 0.695 0.737 0.659

Eclipse 3.6 0.845 0.685 0.739 0.665

Eclipse 3.7 0.888 0.687 0.756 0.698

Eclipse 3.3

Eclipse 3.3 0.818 0.724 0.758 0.696

Eclipse 3.6 0.844 0.719 0.764 0.692

Eclipse 3.7 0.885 0.719 0.779 0.735

Eclipse 3.6
Eclipse 3.6 0.845 0.686 0.740 0.690

Eclipse 3.7 0.892 0.693 0.761 0.757

Eclipse 3.7 Eclipse 3.7 0.889 0.696 0.763 0.764

Journal of Information Technology Management, 2018, Vol.10, No.4 55

From Table 10, it can be inferred that values of F-measure and ROC imply that the

model performs upto good level in the discrimination of non-faulty classes. The highest value

of ROC in this model is 76.4 %. The F-measure values are also appreciative as they lie around

75%, the highest being 77.9%. The model, hence shows good discrimination in predicting

non-faulty classes.

Figure 4. ROC curves on application of J48 based smell prediction model for prediction of non-faulty classes

in the subsequent versions. (a)Performance of Eclipse 3.2 based prediction model. (b) Performance of Eclipse

3.3 based prediction model. (c) Performance of Eclipse 3.6 based prediction model. (d) Application of Eclipse

3.7 based prediction model

The graphical illustration of ROC curves also is indicative of the fact that the model

performs well in its discrimination of the non-faulty classes.

The same experiment was repeated with the change in the dataset used. The datasets

that were used were balanced. The results obtained are listed in the Table 11.

Investigating the Role of Code Smells in Preventive Maintenance 56

Table 11. Performance measures of J48 based Smell-Defect model after balancing

Smell Prediction Model Defects Predicted in Precision Recall F-Measure ROC

Eclipse 3.2

Eclipse 3.2 0.761 0.683 0.720 0.643

Eclipse 3.3 0.771 0.700 0.734 0.663

Eclipse 3.6 0.772 0.677 0.722 0.659

Eclipse 3.7 0.794 0.683 0.734 0.691

Eclipse 3.3

Eclipse 3.3 0.765 0.727 0.746 0.691

Eclipse 3.6 0.771 0.710 0.739 0.692

Eclipse 3.7 0.802 0.748 0.774 0.748

Eclipse 3.6
Eclipse 3.6 0.773 0.678 0.722 0.680

Eclipse 3.7 0.807 0.693 0.745 0.763

Eclipse 3.7 Eclipse 3.7 0.793 0.694 0.740 0.770

Figure 5. ROC curves on application of J48 based prediction model for prediction of non-faulty

classes in the subsequent versions using balanced dataset. (a)Performance of Eclipse 3.2 based

prediction model. (b) Performance of Eclipse 3.3 based prediction model. (c) Performance of

Eclipse 3.6 based prediction model. (d) Application of Eclipse 3.7 based prediction model

For the balanced datasets, J48 algorithm did not show any significant improvement in

the prediction of defective classes. With the average recall and precision values decreasing

slightly, the model does not perform any better than the model based on the unbalanced

Journal of Information Technology Management, 2018, Vol.10, No.4 57

dataset. Overall, the balancing of data does not have significant effect in the increase in the

performance of the J48 algorithm.

SVM based Smell-defect models

Support Vector Machine (SVM) is one of the supervised machine learning algorithms which

finds its use for classification as well as regression problems. For a given a set of training

data, each being labelled in advance according to the category it belongs to, an SVM training

algorithm builds a model by assigning new data to the one of the categories. It thus works as a

non-probabilistic binary linear classifier. To construct a hyperplane which is optimal for a

given problem, SVM uses an iterative training algorithm, which minimizes the error function

given as:

1)
1

2
𝑤𝑇𝑤 + 𝐶∑𝜉

𝑁

𝑖=1

Subject to the constraints 𝑦𝑖(𝑤
𝑇∅(𝑥𝑖) + 𝑏) ≥ 1− 𝜉𝑖 & 𝜉𝑖 ≥ 0, i = 1, … . , N

Where C is the capacity constant, b is a constant, 𝜉𝑖 represents parameters for handling

non-separable data (inputs), and w is the vector of coefficients. The index i goes from 1 to N,

labeling the training cases. The kernel ∅ is a transformation function, transforming data from

the input (independent) to the feature space. To avoid over-fitting, parameter C should be

chosen with care.

 Kernel function is given by:

2) 𝐾(𝑋𝑖 , 𝑋𝑗) =

{

𝑋𝑖. 𝑋𝑗𝐿𝑖𝑛𝑒𝑎𝑟

(𝛾𝑋𝑖𝑋𝑗 + 𝐶)
𝑑𝑃𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙

𝑒𝑥𝑝(−𝛾|𝑋𝑖 − 𝑋𝑗|)
2
𝑅𝐵𝐹

𝑡𝑎𝑛ℎ(𝛾𝑋𝑖𝑋𝑗 + 𝐶)𝑆𝑖𝑔𝑚𝑜𝑖𝑑

Where , 𝐾(𝑋𝑖, 𝑋𝑗) = ∅(𝑋𝑖) . ∅(𝑋𝑗), the kernel function, is a dot product of input data

points mapped into higher dimensional feature space by transformation ∅. γ is an adjustable

parameter of some kernel functions.

Table 12 and figure 6 elucidate the fact that SVM based models show good value for F-

measure, which indicates that it is quite effective in discriminating the non-faulty classes. As

can be seen from the individual ROC curves in the figure 6, the ROC values show a

comparatively low dip, which reflects that the overall model has poor perceptiveness. Given

the results, it can be inferred that the model performs good, although not too good in

prediction of non-faulty classes. SVM has been found to be sensitive to data imbalance and

feature selection and as such may require more tuning for better results.

Investigating the Role of Code Smells in Preventive Maintenance 58

Table 12. Performance measures of SVM based Smell-Defect model

Algorithm Smell Prediction Model Defects Predicted in Precision Recall F-Measure ROC

SVM

Eclipse 3.2

Eclipse 3.2 0.821 0.682 0.730 0.625

Eclipse 3.3 0.816 0.695 0.737 0.641

Eclipse 3.6 0.846 0.690 0.743 0.652

Eclipse 3.7 0.878 0.679 0.750 0.627

Eclipse 3.3

Eclipse 3.3 0.818 0.728 0.761 0.647

Eclipse 3.6 0.845 0.721 0.765 0.651

Eclipse 3.7 0.877 0.713 0.774 0.628

Eclipse 3.6
Eclipse 3.6 0.843 0.690 0.742 0.643

Eclipse 3.7 0.879 0.683 0.752 0.630

Eclipse 3.7 Eclipse 3.7 0.879 0.683 0.753 0.630

Figure 6. ROC curves on application of SVM based prediction model for prediction of non-

faulty classes in the subsequent versions. (a)Performance of Eclipse 3.2 based prediction model.

(b) Performance of Eclipse 3.3 based prediction model. (c) Performance of Eclipse 3.6 based

prediction model. (d) Application of Eclipse 3.7 based prediction model.

The dataset, when balanced, does not considerably affect the performance of the model.

The performance of the model is, by standards, not too good and needs improvement through

feature selection and other tweaks. Table 13 lists the individual performances of each of the

models based on a certain software version. The ROC values, if compared with those in Table

Journal of Information Technology Management, 2018, Vol.10, No.4 59

12 don’t show much deviation. Figure 7 is also indicative of the relative performance of the

model on different data.

Table 13. Performance measures of SVM based Smell-Defect model after balancing

Algorithm Smell Prediction Model Applied on Precision Recall F-Measure ROC

SVM

Eclipse 3.2

Eclipse 3.2 0.652 0.633 0.640 0.612

Eclipse 3.3 0.670 0.653 0.659 0.632

Eclipse 3.6 0.678 0.656 0.663 0.642

Eclipse 3.7 0.664 0.646 0.653 0.626

Eclipse 3.3

Eclipse 3.3 0.673 0.666 0.669 0.634

Eclipse 3.6 0.679 0.668 0.672 0.642

Eclipse 3.7 0.683 0.680 0.681 0.645

Eclipse 3.6
Eclipse 3.6 0.673 0.653 0.660 0.636

Eclipse 3.7 0.665 0.646 0.653 0.626

Eclipse 3.7 Eclipse 3.7 0.665 0.646 0.653 0.626

Figure 7. ROC curves on application of SVM based prediction model for prediction of

non-faulty classes in the subsequent versions using balanced dataset.(a)Performance of

Eclipse 3.2 based prediction model. (b) Performance of Eclipse 3.3 based prediction model.

(c) Performance of Eclipse 3.6 based prediction model. (d) Application of Eclipse 3.7 based

prediction model.

Investigating the Role of Code Smells in Preventive Maintenance 60

Threats to Validity

This section deals with the discussion of the Internal and External threats to validity of our

approach. While the threats to the internal validity are concerned with the correctness of the

experimental outcome, the threats to external validity are concerned with the extendibility of

the results obtained.

Threats to Internal Validity

The research tries to approach the problem in the most viable way. Some of the factors would

have influenced the results and pose threat to the validity. A limitation in the bug data

collection is that it is done by the master level students and not by some professionals. Putting

students to the task of bug data collection is justified as many studies have used students as

substitutes of professionals in software engineering (Fontana et al., 2016).Additionally, the

students were beforehand briefed about the process and adequately trained to perform the

task. Another threat to validity is the nature of smells being subjective. As the smells are

subjective in nature and extracted by a single tool through the analysis, the smells may show

some bias to the underlying detection strategy, and in turn, metrics. This threat has been

countered by using different tools for smell extraction and metrics extraction. The metrics

extraction software is independent of the smell extraction software and hence the smell

definitions become somewhat independent of the associated metrics. The metric definitions in

both the tools vary and such this problem is alleviated to a good level. Although, it is

suggested that the future experiments should include a broader and accumulated definition of

code smells which encompasses variety of underlying methodologies. Another query that can

be raised is that the interdependence of smells and/or dominance of smells may have impacted

the smell labels in the modules. This problem is tackled by taking a balanced combination of

class and method type smells, each one being a prominent in their impact(Fontana et al.,

2016), and the final label being inclusive of both the types of smells.

Threats to External Validity

Application and generalisation of the results to other software is an important threat to the

external validity. This threat has been encountered through selecting an open source, industry

sized software for analysis. This mitigates this threat to a large extent. As the software is

written in java language, its generalizability is limited to such similar software as a certain

programming language affects many metric values. This limitation can be overcome by

including different software from different domains and of varied platforms. The size of the

actual modules observed could also limit the generalisability of the results to the other

software. The inclusion of a large scale data set can enhance the generalisation of the results

inferred. The experiment was limited by time and human resources and as such, the

possibility of extraction of huge dataset was excluded. As most of the work in filing the bugs

Journal of Information Technology Management, 2018, Vol.10, No.4 61

was done manually, it was not possible to extend the analysis further. Further, the amount of

data collected was sufficient enough for machine learning algorithms to get trained on, the

problem being binary classification. Future works may include large corpus of datasets of

diverse platforms so as to generalise the result to greater extent. Another objection would be

using ROC and F-measure as performance measures for the experiment. ROC and F-measure

are the parameters that have been found to be quite reflective of the performance of the

models in the machine learning and many researchers have used and supported the use of

these performance measures as enough empirical evidence for concluding (Sang, De Meulder,

2003; Provost, Tom, Kohavi, 1998).

Conclusion and Future Work

This study focuses on the viability of code smell based model as predictors of non-faulty

classes, with supervised machine learning algorithms in an industry sized, object-oriented

software. It examines conjunction of various code smells for their effectiveness in

maintenance of software by predicting the classes which require less or no attention in the

maintenance of the software. The study also tries to find out whether the code smells can also

be taken as a factor in prediction of non-faulty classes so as to enhance the code

maintainability. The prediction of non-faulty classes, or the classes which are very uncertain

to contain bugs in near future can help in the preventive maintenance by providing an idea of

prioritising the classes which may be prone and leaving the classes which are not. The study

concludes that code smells can be an effective factor in determining the defects in a software.

As code smells may tend to be more objective, they can be more important in software

maintenance. The effective combination of a standardised code smell set, objectively derived,

can further improve the prediction of non-faulty classes. As the methodology used to extract

smells and the consideration of smells has a considerable impact on the outcome of this study,

as the smells are subjective in nature, future studies should include different treatment of

smells vis-à-vis detection and grouping strategy. This study can also be used as a baseline to

further explore the role of code smells in the prediction of absence of software bugs.

References

Bengio, Y., & Grandvalet, Y. (2004). No unbiased estimator of the variance of k-fold cross-validation.

The Journal of Machine Learning Research, 5, 1089-1105.

Cartwright, M., & Shepperd, M. (2000). An empirical investigation of an object-oriented software

system. IEEE Transactions on Software Engineering, 26(8), 786-796.

Catal, C. (2011). Software fault prediction: a literature review and current trends. Expert Systems with

Applications, 38, 4626-4636.

Investigating the Role of Code Smells in Preventive Maintenance 62

Cohen, P., & Jensen, D. (1997). Overfitting explained. Preliminary Papers of the Sixth International

Workshop on Artificial Intelligence and Statistics (pp. 115-122). Self published,Printed

proceedings distributed at the workshop.

Fontana, F. A., Mäntylä, M. V., Zanoni, M., & Marino, A. (2016). Comparing and experimenting

machine learning techniques for code smell detection. Empir Software Eng, 1143-1191.

Fowler, M., Beck, K., Brant, J., Opdyke, W., & Roberts, D. (2002). In Refactoring: Improving the

Design of Existing Code (pp. 63-72). Addison Wesley.

Gueheneuc, Y. G., Sahraoui, H., & Zaidi, F. (2004). Fingerprinting design patterns. 11th Working

Conference on Reverse Engineering (pp. 1095-1350). Deft: IEEE Computer Society .

Hall, T., Beecham, S., Bowes, D., Gray, D., & Counsell, S. (2011). A systematic literature review on

fault prediction performance in software engineering. IEEE Transactions on Software

Engineering, 38(6), 1-31.

Kapila, H., & Singh, S. (2013). Analysis of CK Metrics to predict Software Fault-Proneness using

Bayesian Inference. International Journal of Computer Applications, 74(2), 1-4.

Kim Sang, E.F.T., & De Meulder, F. (2003). Introduction to the CoNLL-2003 Shared Task:

Language-independent Named Entity Recognition. Proceedings of the Seventh Conference on

Natural Language Learning (pp. 142-147). Edmonton, Canada: Association for Computational

Linguistics.

Lessmann, S., Baesens, B., Mues, C., & Pietsch, S. (2008). Benchmarking Classification Models for

Software Defect Prediction: A Proposed Framework and Novel Findings. IEEE Transactions on

Software Engineering, 34(4), 485-496.

Maiga, A., Ali, N., Bhattacharya, N., Sabane, A., Gùehèneuc, Y.G., & Aimeur, E. (2012). SMURF: A

SVM-based Incremental Anti-pattern Detection Approach. 19th Working Conference on

Reverse Engineering (pp. 466-475). Kingston, Canada: IEEE.

Maiga, A., Ali, N., Bhattacharya, N., Sabane, A., Gùehèneuc, Y.G., Antoniol, G., & Aimeur, E.

(2012). Support vector machines for anti-pattern detection. 27th IEEE/ACM International

Conference on Automated Software Engineering (pp. 278-281). Essen,Germany: ACM.

Provost, F. J., Tom, F., & Kohavi, R. (1998). The case against accuracy estimation for comparing

induction algorithms. International Conference on Machine Learning, 98, 445-453.

Singh, S., & Kaur, S. (2017). A systematic literature review: Refactoring for disclosing code smells in

object oriented software. Ain Shams Engineering Journal, 9(4), 2129-2151.

Singh, Y., Kaur, A., & Malhotra, R. (2010, March). Empirical validation of object-oriented metrics for

predicting fault proneness models. Software Quality Journal, 18(3), 3-35.

Stone, M. (1974). Cross-Validatory Choice and Assessment of Statistical Predictions. Journal of the

Royal Statistical Society,Ser B, 36(2), 111-147.

Yamashita, A., & Moonen, L. (2013). Exploring the impact of inter-smell relations on software

maintainability: An empirical study. Proceedings of the 2013 International Conference on

Software Engineering (pp. 682-691). IEEE Press.

Journal of Information Technology Management, 2018, Vol.10, No.4 63

Zimmermann, T., Premraj, R., & Zeller, A. (2007). Predicting defects for eclipse. International

Workshop on Predictor Models in Software Engineering PROMISE'07: ICSE Workshops 2007

(pp. 9-9). IEEE.

Bibliographic information of this paper for citing:

Ali Reshi, Junaid, & Singh, Satwinder (2018). Investigating the Role of Code Smells in Preventive Maintenance.

Journal of Information Technology Management, 10(4), 41-63.

Copyright © 2018, Junaid Ali Reshi and Satwinder Singh.

