Chen, L., Gu, Y., Ji, X., Sun, Z., Li, H., Gao, Y., & Huang, Y. (2020). Extracting medications and associated adverse drug events using a natural language processing system combining knowledge base and deep learning.
Journal of the American Medical Informatics Association: JAMIA, 27(1), 56–64.
https://doi.org/10.1093/jamia/ocz141
Eysenbach, G. (2023). The role of ChatGPT, generative language models, and artificial intelligence in medical education: A conversation with ChatGPT and a call for papers.
JMIR Medical Education, 9, e46885–e46885.
https://doi.org/10.2196/46885
Jain, A., & Raja, R. (2023). Automated novel heterogeneous meditation tradition classification via optimized chi-squared 1DCNN method.
Journal of Information Technology Management, 15(Special Issue: EIntelligent and Security for Communication, Computing Application (ISCCA-2022)), 1–22.
https://doi.org/10.22059/jitm.2023.95223
Jain, A., Raja, R., Kumar, M., & Verma, P. K. (2025). A novel classification of meditation techniques via optimised chi-squared 1D-CNN method based on complexity, continuity and connectivity features.
Connection Science, 37(1).
https://doi.org/10.1080/09540091.2025.2467387
Kilicoglu, H., Shin, D., Fiszman, M., Rosemblat, G., & Rindflesch, T. C. (2012). SemMedDB: A PubMed-scale repository of biomedical semantic predications.
Bioinformatics (Oxford, England), 28(23), 3158–3160.
https://doi.org/10.1093/bioinformatics/bts591
Lecler, A., Duron, L., & Soyer, P. (2023). Revolutionizing radiology with GPT-based models: Current applications, future possibilities and limitations of ChatGPT.
Diagnostic and Interventional Imaging, 104(6), 269–274.
https://doi.org/10.1016/j.diii.2023.02.003
Liu, S., Wright, A. P., Patterson, B. L., Wanderer, J. P., Turer, R. W., Nelson, S. D., McCoy, A. B., Sittig, D. F., & Wright, A. (2023). Using AI-generated suggestions from ChatGPT to optimize clinical decision support.
Journal of the American Medical Informatics Association: JAMIA, 30(7), 1237–1245.
https://doi.org/10.1093/jamia/ocad072
Patel, C. R., Pandya, S. K., & Sojitra, B. M. (2023). Perspectives of ChatGPT in pharmacology education, and research in health care: A narrative review.
Journal of Pharmacology and Pharmacotherapeutics, 14(3), 171–177.
https://doi.org/10.1177/0976500X231210427
Rahaman, M. S., Ahsan, M. M. T., Anjum, N., Rahman, M. M., & Rahman, M. N. (2023). The AI race is on! Google’s Bard and OpenAI’s ChatGPT head to head: An opinion article.
SSRN Electronic Journal.
https://doi.org/10.2139/ssrn.4351785
Sallam, M. (2023). ChatGPT utility in healthcare education, research, and practice: Systematic review on the promising perspectives and valid concerns.
Healthcare (Basel, Switzerland), 11(6), 887.
https://doi.org/10.3390/healthcare11060887
Śniegula, A., Poniszewska-Marańda, A., & Chomątek, Ł. (2020). Towards the named entity recognition methods in biomedical field. In
Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 12011 LNCS, pp. 375–387).
https://doi.org/10.1007/978-3-030-38919-2_31
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., & Polosukhin, I. (2017). Attention is all you need. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, & R. Garnett (Eds.),
Advances in Neural Information Processing Systems (Vol. 30). Curran Associates, Inc.
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
Wu, S. T., Sohn, S., Ravikumar, K. E., Wagholikar, K., Jonnalagadda, S. R., Liu, H., & Juhn, Y. J. (2013). Automated chart review for asthma cohort identification using natural language processing: An exploratory study.
Annals of Allergy, Asthma & Immunology: Official Publication of the American College of Allergy, Asthma, & Immunology, 111(5), 364–369.
https://doi.org/10.1016/j.anai.2013.07.022
Wu, Y., Xu, J., Jiang, M., Zhang, Y., & Xu, H. (2015). A study of neural word embeddings for named entity recognition in clinical text.
AMIA Annual Symposium Proceedings, 2015, 1326.
https://pmc.ncbi.nlm.nih.gov/articles/PMC4765694/
Xue, V. W., Lei, P., & Cho, W. C. (2023). The potential impact of ChatGPT in clinical and translational medicine.
Clinical and Translational Medicine, 13(3), e1216–e1216.
https://doi.org/10.1002/ctm2.1216
Yan, J. (2021). Text mining with R: A tidy approach, by Julia Silge and David Robinson. Sebastopol, CA: O’Reilly Media, 2017. ISBN 978-1-491-98165-8. XI + 184 pages.
Natural Language Engineering, 28(1), 137–139.
https://doi.org/10.1017/s1351324920000649
Zaoui, I., Hallem, Y., Nasr, I. B., & Bougatfa, S. (2025). Enhancing generative AI usage for employees: Key drivers and barriers.
Journal of Information Technology Management, 17(Special Issue on Strategic, Organizational, and Social Issues of Digital Transformation in Organizations), 24–54.
https://doi.org/10.22059/JITM.2025.100696
Zhang, P., & Kamel Boulos, M. N. (2023). Generative AI in medicine and healthcare: Promises, opportunities and challenges.
Future Internet, 15(9), 286.
https://doi.org/10.3390/FI15090286