Abadi, M., Chu, A., Goodfellow, I., McMahan, H. B., Mironov, I., Talwar, K., & Zhang, L. (2016). Deep learning with differential privacy.
Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security (CCS), 308–318.
https://doi.org/10.1145/2976749.2978318
Bonawitz, K., Eichner, H., Grieskamp, W., Huba, D., Ingerman, A., Ivanov, V., ... & van Overveldt, T. (2019). Towards federated learning at scale: System design.
Proceedings of the 2nd SysML Conference. Retrieved from
https://arxiv.org/abs/1902.01046
Bonawitz, K., Ivanov, V., Kreuter, B., Marcedone, A., McMahan, H. B., Patel, S., ... & Seth, K. (2017). Practical secure aggregation for federated learning on user-held data.
Advances in Neural Information Processing Systems (NeurIPS), 30, 1–12. Retrieved from
https://arxiv.org/abs/1708.06689
Caldas, S., Konečný, J., McMahan, H. B., & Talwalkar, A. (2018). Expanding the reach of federated learning by reducing client resource requirements.
arXiv preprint. Retrieved from
https://arxiv.org/abs/1812.07210
Chen, Y., Xie, Y., Kairouz, P., & Song, L. (2020). Understanding model averaging in federated learning with structured optimization.
Advances in Neural Information Processing Systems (NeurIPS), 33, 1–11. Retrieved from
https://arxiv.org/abs/2003.10417
Geyer, R. C., Klein, T., & Nabi, M. (2017). Differentially private federated learning: A client level perspective.
Advances in Neural Information Processing Systems (NeurIPS) Workshop. Retrieved from
https://arxiv.org/abs/1712.07557
Hardy, S., Berkovsky, S., Penschuck, M., Germanakos, P., & Bellotti, F. (2020). Federated learning for user modeling.
Proceedings of the 28th ACM Conference on User Modeling, Adaptation, and Personalization (UMAP), 1–11.
https://doi.org/10.1145/3340631.3394868
Hynes, N., Dao, D., Yan, C., Cheng, F., Song, D., & Popa, R. A. (2018). A demonstration of Sterling: A privacy-preserving data marketplace.
Proceedings of the VLDB Endowment, 11(12), 2086–2089.
https://doi.org/10.14778/3229863.3236267
Kairouz, P., McMahan, H. B., Avent, B., Bellet, A., Bennis, M., Bhagoji, A. N., ... & Zhao, S. (2021). Advances and open problems in federated learning.
Foundations and Trends® in Machine Learning, 14(1–2), 1–210.
https://doi.org/10.1561/2200000083
Konečný, J., McMahan, H. B., Yu, F. X., Richtárik, P., Suresh, A. T., & Bacon, D. (2016). Federated learning: Strategies for improving communication efficiency.
arXiv preprint. Retrieved from
https://arxiv.org/abs/1610.05492
Li, Q., Wen, Z., Wu, Z., Hu, S., Wang, N., Li, Y., & He, B. (2019). A survey on federated learning systems: Vision, hype, and reality for data privacy and protection.
arXiv preprint. Retrieved from
https://arxiv.org/abs/1902.04885
Li, T., Sahu, A. K., Talwalkar, A., & Smith, V. (2020). Federated learning: Challenges, methods, and future directions.
IEEE Signal Processing Magazine, 37(3), 50–60.
https://doi.org/10.1109/MSP.2020.2975749
Li, X., Huang, K., Yang, W., Wang, S., & Zhang, Z. (2020). On the convergence of FedAvg on non-IID data.
International Conference on Learning Representations (ICLR). Retrieved from
https://arxiv.org/abs/1907.02189
Luo, C., Zhang, F., Zhou, Y., & Huang, L. (2021). Privacy-preserving federated learning for speech recognition.
IEEE/ACM Transactions on Audio, Speech, and Language Processing, 29, 1495–1507.
https://doi.org/10.1109/TASLP.2021.3050296
Mangal, A., Garg, H., & Bhatnagar, C. (2023). Assessing the performance of saliency detection method using various deep neural networks. Journal of Information Technology Management, 15(Special Issue), 23–34. https://doi.org/10.22059/jitm.2023.95243
McMahan, H. B., Moore, E., Ramage, D., Hampson, S., & Arcas, B. A. Y. (2017). Communication-efficient learning of deep networks from decentralized data.
Proceedings of the 20th International Conference on Artificial Intelligence and Statistics (AISTATS), 54, 1273–1282. Retrieved from
https://arxiv.org/abs/1602.05629
Mohri, M., Sivek, G., & Suresh, A. T. (2019). Agnostic federated learning.
International Conference on Machine Learning (ICML), 4661–4670. Retrieved from
https://arxiv.org/abs/1902.00146
Nguyen, D. C., Ding, M., Pathirana, P. N., & Seneviratne, A. (2021). Federated learning for Internet of Things: A comprehensive survey.
IEEE Communications Surveys & Tutorials, 23(3), 1622–1658.
https://doi.org/10.1109/COMST.2021.3075439
Reisizadeh, A., Mokhtari, A., Hassani, H., Jadbabaie, A., & Pedarsani, R. (2020). FedPAQ: A communication-efficient federated learning method with periodic averaging and quantization.
Proceedings of the 23rd International Conference on Artificial Intelligence and Statistics (AISTATS), 2020, 2021–2029. Retrieved from
https://arxiv.org/abs/1909.06335
Sattler, F., Wiedemann, S., Müller, K.-R., & Samek, W. (2019). Robust and communication-efficient federated learning from non-i.i.d. data.
IEEE Transactions on Neural Networks and Learning Systems, 31(9), 3400–3413.
https://doi.org/10.1109/TNNLS.2019.2944482
Shokri, R., & Shmatikov, V. (2015). Privacy-preserving deep learning.
Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security (CCS), 1310–1321.
https://doi.org/10.1145/2810103.2813687
Smith, V., Chiang, C.-K., Sanjabi, M., & Talwalkar, A. (2017). Federated multi-task learning.
Advances in Neural Information Processing Systems (NeurIPS), 30, 4424–4434. Retrieved from
https://arxiv.org/abs/1705.10467
Truex, S., Baracaldo, N., Anwar, A., Steinke, T., Ludwig, H., Weber, B., & Pasupuleti, V. (2019). A hybrid approach to privacy-preserving federated learning.
Proceedings of the 12th ACM Workshop on Artificial Intelligence and Security (AISec), 1–11.
https://doi.org/10.1145/3338501.3357370
Wang, H., Yurochkin, M., Sun, Y., Papailiopoulos, D., & Khazaeni, Y. (2020). Federated learning with matched averaging.
International Conference on Learning Representations (ICLR). Retrieved from
https://arxiv.org/abs/2002.06440
Wang, J., Zhao, Y., Yao, Q., Kwok, J. T., & Ni, L. M. (2019). Federated learning with matched averaging.
International Joint Conferences on Artificial Intelligence (IJCAI), 5050–5056.
https://doi.org/10.24963/ijcai.2019/703
Yang, Q., Liu, Y., Cheng, Y., Kang, Y., Chen, T., & Yu, H. (2019). Federated learning.
Synthesis Lectures on Artificial Intelligence and Machine Learning, 13(3), 1–207.
https://doi.org/10.2200/S00960ED1V01Y201910AIM043
Yang, T., Andrew, G., Eichner, H., Sun, H., Li, W., Kong, N., ... & McMahan, H. B. (2018). Applied federated learning: Improving Google keyboard query suggestions.
arXiv preprint. Retrieved from
https://arxiv.org/abs/1812.02903
Zhang, Z., Liang, P. P., Zhang, C., & Gitter, A. (2021). Federated multi-modal learning with missing data.
Proceedings of the 38th International Conference on Machine Learning (ICML), 2021. Retrieved from
https://arxiv.org/abs/2009.06186
Zhao, Y., Li, M., Lai, L., Suda, N., Civin, D., & Chandra, V. (2018). Federated learning with non-iid data.
arXiv preprint. Retrieved from
https://arxiv.org/abs/1806.00582
Zhu, H., Zhou, J., & Xu, S. (2021). Data-free knowledge distillation for heterogeneous federated learning.
Proceedings of the 39th International Conference on Learning Representations (ICLR). Retrieved from
https://arxiv.org/abs/2012.05387
Zhu, L., Liu, Z., & Han, S. (2019). Deep leakage from gradients.
Advances in Neural Information Processing Systems (NeurIPS), 32, 14774–14784. Retrieved from
https://arxiv.org/abs/1906.08935