Abdullah, N. A., Feizollah, A., Sulaiman, A., & Anuar, N. B. (2019). Challenges and Recommended Solutions in Multi-Source and Multi-Domain Sentiment Analysis. IEEE Access, 7, 144957-144971. https://doi.org/10.1109/ACCESS.2019.2945340
Alami, N., Meknassi, M., & En-nahnahi, N. (2019). Enhancing unsupervised neural networks-based text summarization with word embedding and ensemble learning. Expert systems with applications, 123, 195-211. https://doi.org/10.1016/j.eswa.2019.01.037
Al-Moslmi, T., Omar, N., Abdullah, S., & Albared, M. (2017). Approaches to cross-domain sentiment analysis: A systematic literature review. IEEE access, 5, 16173-16192. https://doi.org/10.1109/ACCESS.2017.2690342
Babu, N. V., & Kanaga, E. G. M. (2022). Sentiment analysis in social media data for depression detection using artificial intelligence: a review. SN Computer Science, 3, 1-20. https://doi.org/10.1007/s42979-021-00958-1
Başarslan, M. S., & Kayaalp, F. (2023). Sentiment analysis with ensemble and machine learning methods in multi-domain datasets. Turkish Journal of Engineering, 7(2), 141-148. https://doi.org/10.31127/tuje.1079698
Bengio, Y. (2012, June). Deep learning of representations for unsupervised and transfer learning. JMLR: Workshop and Conference Proceedings 27, 17–37. http://proceedings.mlr.press/v27/bengio12a/bengio12a.pdf
Bhavitha, B. K., Rodrigues, A. P., & Chiplunkar, N. N. (2017, March). Comparative study of machine learning techniques in sentimental analysis. In 2017 International conference on inventive communication and computational technologies (ICICCT) (pp. 216-221). IEEE. https://doi.org/10.1109/ICICCT.2017.7975191
Blei, D. M. (2012). Probabilistic topic models. Communications of the ACM, 55(4), 77-84. https://doi.org/10.1145/2133806.2133826
Chen, J., Feng, J., Sun, X., & Liu, Y. (2020). Co-Training Semi-Supervised Deep Learning for Sentiment Classification of MOOC Forum Posts. Symmetry, 12(1), 8-32. https://doi.org/10.3390/sym12010008
Chen, T., Xu, R., He, Y., & Wang, X. (2017a). Improving sentiment analysis via sentence type classification using BiLSTM-CRF and CNN.
Expert Systems with Applications, 72, 221-230.
https://doi.org/10.1016/j.eswa.2016.10.065
Chen, L., Guan, Z., He, J., & Peng, J. (2017b). A survey on sentiment classification. J. Comput. Res. Dev, 54(6), 1150-1170.
Dahal, B., Kumar, S. A., & Li, Z. (2019). Topic modeling and sentiment analysis of global climate change tweets. Social Network Analysis and Mining, 9(24), 1-20.
Gulati, K., Kumar, S. S., Boddu, R. S. K., Sarvakar, K., Sharma, D. K., & Nomani, M. Z. M. (2022). Comparative analysis of machine learning-based classification models using sentiment classification of tweets related to COVID-19 pandemic.
Materials Today: Proceedings, 51, 38-41
https://doi.org/10.1016/j.matpr.2021.04.364
Haque, T. U., Saber, N. N., & Shah, F. M. (2018, May). Sentiment analysis on large scale Amazon product reviews. In 2018 IEEE International Conference on Innovative Research and Development (ICIRD) (pp. 1-6). IEEE. https://doi.org/10.1109/ICIRD.2018.8376299
Huq, M. R., Ahmad, A., & Rahman, A. (2017). Sentiment analysis on Twitter data using KNN and SVM. International Journal of Advanced Computer Science and Applications, 8(6),19-25. https://pdfs.semanticscholar.org/05a8/78000170abcd0c6f8208080470858422e17c.pdf
Li, Z., Wei, Y., Zhang, Y., & Yang, Q. (2018, April).
Hierarchical attention transfer network for cross-domain sentiment classification. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1).
https://doi.org/10.1609/aaai.v32i1.12055
Li, Z., Zhang, Y., Wei, Y., Wu, Y., & Yang, Q. (2017, August). End-to-End Adversarial Memory Network for Cross-domain Sentiment Classification. In Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17) (pp. 2237-2243). https://hsqmlzno1.github.io/assets/publications/AMN2017.pdf
Lin, C., & He, Y. (2009, November).
Joint sentiment/topic model for sentiment analysis. In Proceedings of the 18th ACM conference on Information and knowledge management (pp. 375-384).
https://doi.org/10.1145/1645953.1646003
Lin, S., Xie, H., Yu, L. C., & Lai, K. R. (2017, December). SentiNLP at IJCNLP-2017 Task 4: Customer feedback analysis using a Bi-LSTM-CNN model. In Proceedings of the IJCNLP 2017, Shared Tasks (pp. 149-154). https://aclanthology.org/I17-4025/
Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167. http://proceedings.mlr.press/v37/ioffe15.html
Liu, Y., Jin, J., Ji, P., Harding, J. A., & Fung, R. Y. (2013). Identifying helpful online reviews: a product designer’s perspective.
Computer-Aided Design, 45(2), 180-194.
https://doi.org/10.1016/j.cad.2012.07.008
McTear, M., Callejas, Z., & Griol, D. (2016). The dawn of the conversational interface. In The Conversational Interface (pp. 11-24). Springer, Cham. https://doi.org/10.1007/978-3-319-32967-3_2
Monali, P., & Sandip, K. (2014). A concise survey on text data mining. International Journal of Advanced Research in Computer and Communication Engineering, 3(9), 8040-8043.
Pal, S., Ghosh, S., & Nag, A. (2018). Sentiment analysis in the light of LSTM recurrent neural networks. International Journal of Synthetic Emotions (IJSE), 9(1), 33-39. https://doi.org/10.4018/IJSE.2018010103
Pandey, A. C., Rajpoot, D. S., & Saraswat, M. (2017). Twitter sentiment analysis using hybrid cuckoo search method.
Information Processing & Management, 53(4), 764-779.
https://doi.org/10.1016/j.ipm.2017.02.004
Peng, M., Zhang, Q., Jiang, Y. G., & Huang, X. J. (2018, July). Cross-domain sentiment classification with target domain specific information. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers) (pp. 2505-2513). Melbourne, Australia. https://doi.org/10.18653/v1/P18-1233
Piryani, R., Madhavi, D., & Singh, V. K. (2017). Analytical mapping of opinion mining and sentiment analysis research during 2000–2015.
Information Processing & Management, 53(1), 122-150.
https://doi.org/10.1016/j.ipm.2016.07.001
Qi, J., Zhang, Z., Jeon, S., & Zhou, Y. (2016). Mining customer requirements from online reviews: A product improvement perspective.
Information & Management,
53(8), 951-963.
https://doi.org/10.1016/j.im.2016.06.002
Salas-Zárate, M. D. P., Medina-Moreira, J., Lagos-Ortiz, K., Luna-Aveiga, H., Rodriguez-Garcia, M. A., & Valencia-Garcia, R. (2017). Sentiment analysis on tweets about diabetes: an aspect-level approach.
Computational and mathematical methods in medicine,
2017.
https://doi.org/10.1155/2017/5140631
Severyn, A., & Moschitti, A. (2015, August).
Twitter sentiment analysis with deep convolutional neural networks. In Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 959-962).
https://doi.org/10.1145/2766462.2767830
Sivic, J., & Zisserman, A. (2008). Efficient visual search of videos cast as text retrieval.
IEEE transactions on pattern analysis and machine intelligence, 31(4), 591-606. https://doi.org/
10.1109/TPAMI.2008.111
Snoek, J., Larochelle, H., & Adams, R. P. (2012). Practical bayesian optimization of machine learning algorithms. In Advances in neural information processing systems (pp. 2951-2959). https://proceedings.neurips.cc/paper_files/paper/2012/hash/05311655a15b75fab86956663e1819cd-Abstract.html
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research, 15(1), 1929-1958. https://www.jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf?utm_content=buffer79b43&utm_medium=social&utm_source=twitter.com&utm_campaign=buffer,
Sun, S., Luo, C., & Chen, J. (2017). A review of natural language processing techniques for opinion mining systems. Information fusion, 36, 10-25. https://doi.org/10.1016/j.inffus.2016.10.004
Tang, D., Qin, B., & Liu, T. (2015). Deep learning for sentiment analysis: successful approaches and future challenges. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 5(6), 292-303. https://doi.org/10.1002/widm.1171
Vidya, S. (2018). Cross Domain Sentiment Classification Using Natural Language Processing. International Journal of Scientific Research in Computer Science, Engineering and Information Technology. 3(3), 348-353. https://www.researchgate.net/profile/Dr-Svidya/publication/361983484_Cross_Domain_Sentiment_Classification_Using_Natural_Language_Processing/links/62cfc802e2a5013989058038/Cross-Domain-Sentiment-Classification-Using-Natural-Language-Processing.pdf
Wei, X., Lin, H., Yang, L., & Yu, Y. (2017). A convolution-LSTM-based deep neural network for cross-domain MOOC forum post classification.
Information,
8(3), 92-108.
https://doi.org/10.3390/info8030092
Yadav, A., & Vishwakarma, D. K. (2023). A deep multi-level attentive network for multimodal sentiment analysis.
ACM Transactions on Multimedia Computing, Communications and Applications,
19(1), 1-19.
https://doi.org/10.3390/info8030092
Yang, L., Li, Y., Wang, J., & Sherratt, R. S. (2020). Sentiment analysis for E-commerce product reviews in Chinese based on sentiment lexicon and deep learning.
IEEE access,
8, 23522-23530.
https://doi.org/10.1109/ACCESS.2020.2969854
Yang, X., Zhang, T., Xu, C., & Yang, M. H. (2015). Boosted multi-feature learning for cross-domain transfer.
ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM),
11(3), 1-18.
https://doi.org/10.1145/2700286
Yuan, Z., Wu, S., Wu, F., Liu, J., & Huang, Y. (2018). Domain attention model for multi-domain sentiment classification.
Knowledge-Based Systems,
155, 1-10.
https://doi.org/10.1016/j.knosys.2018.05.004
Yuan, Y., & Zhou, Y. (2015). Twitter sentiment analysis with recursive neural networks. CS224D course projects. https://cs224d.stanford.edu/reports/YuanYe.pdf
Zhang, L., Wang, S., & Liu, B. (2018). Deep learning for sentiment analysis: A survey.
Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery,
8(4), e1253.
https://doi.org/10.1002/widm.1253
Zhang, X., & Zheng, X. (2016, July). Comparison of text sentiment analysis based on machine learning. In 2016 15th international symposium on parallel and distributed computing (ISPDC) (pp. 230-233). IEEE. https://doi.org/10.1109/ISPDC.2016.39s
Zhou, G., Zhou, Y., Guo, X., Tu, X., & He, T. (2015). Cross-domain sentiment classification via topical correspondence transfer.
Neurocomputing,
159, 298-305.
https://doi.org/10.1016/j.neucom.2014.12.006
Zhao, C., Wang, S., & Li, D. (2017, September). Deep transfer learning for social media cross-domain sentiment classification. In Chinese National Conference on Social Media Processing (pp. 232-243). Springer, Singapore. https://doi.org/10.1007/978-981-10-6805-819
Zhu, F., Dong, X., Song, R., Hong, Y., & Zhu, Q. (2017, November). A multiple learning model based voting system for news headline classification. In National CCF Conference on Natural Language Processing and Chinese Computing (pp. 797-806). Springer, Cham. https://doi.org/10.1007/978-3-319-73618-1_69
Ziser, Y., & Reichart, R. (2018, June). Pivot based language modeling for improved neural domain adaptation. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers) (pp. 1241-1251). https://aclanthology.org/N18-1112/
Zola, Paola, Paulo Cortez, Costantino Ragno, and Eugenio Brentari. (2019). Social Media Cross-Source and Cross-Domain Sentiment Classification.
International Journal of Information Technology & Decision Making (IJITDM). 18(5), 1469-1499.
https://doi.org/10.1142/S0219622019500305