Abdalrada, A.S., Abawajy, J., Al-Quraishi, T. and Islam, S.M.S., (2022). Machine learning models for prediction of co-occurrence of diabetes and cardiovascular diseases: a retrospective cohort study. Journal of Diabetes & Metabolic Disorders, 21(1), pp.251-261.
Ahmed, S. T., Singh, D. K., Basha, S. M., Abouel Nasr, E., Kamrani, A. K., & Aboudaif, M. K. (2021). Neural network based mental depression identification and sentiments classification technique from speech signals: A COVID-19 Focused Pandemic Study. Frontiers in public health, 9, 781827.
Ahmed, S. T., Vinoth Kumar, V., Mahesh, T. R., Narasimha Prasad, L. V., Velmurugan, A. K., Muthukumaran, V., & Niveditha, V. R. (2024). FedOPT: federated learning-based heterogeneous resource recommendation and optimization for edge computing. Soft Computing, 1-12.
Alqahtani, A., Alsubai, S., Sha, M., Vilcekova, L. and Javed, T., (2022). Cardiovascular disease detection using ensemble learning. Computational Intelligence and Neuroscience, 2022.
Ashok, K., Boddu, R., Syed, S.A., Sonawane, V.R., Dabhade, R.G. and Reddy, P.C.S., (2023). GAN Base feedback analysis system for industrial IOT networks. Automatika, 64(2), pp.259-267.
Baashar, Y., Alkawsi, G., Alhussian, H., Capretz, L.F., Alwadain, A., Alkahtani, A.A. and Almomani, M., (2022). Effectiveness of artificial intelligence models for cardiovascular disease prediction: network meta-analysis. Computational intelligence and neuroscience, 2022.
Baskar, S., Nandhini, I., Prasad, M. L., Katale, T., Sharma, N., & Reddy, P. C. S. (2023, November). An Accurate Prediction and Diagnosis of Alzheimer’s Disease using Deep Learning. In 2023 IEEE North Karnataka Subsection Flagship International Conference (NKCon) (pp. 1-7). IEEE.
Chillakuru, P., Madiajagan, M., Prashanth, K.V., Ambala, S., Shaker Reddy, P.C. and Pavan, J., (2023). Enhancing wind power monitoring through motion deblurring with modified GoogleNet algorithm. Soft Computing, pp.1-11.
Dhanalakshmi, R., Bhavani, N.P.G., Raju, S.S., Shaker Reddy, P.C., Marvaluru, D., Singh, D.P. and Batu, A., (2022). Onboard pointing error detection and estimation of observation satellite data using extended kalman filter. Computational Intelligence and Neuroscience, 2022.
Dritsas, E., Alexiou, S. and Moustakas, K., (2022), April. Cardiovascular Disease Risk Prediction with Supervised Machine Learning Techniques. In ICT4AWE (pp. 315-321).
Guleria, P., Naga Srinivasu, P., Ahmed, S., Almusallam, N. and Alarfaj, F.K., (2022). XAI framework for cardiovascular disease prediction using classification techniques. Electronics, 11(24), p.4086.
Kumar, K., Pande, S.V., Kumar, T., Saini, P., Chaturvedi, A., Reddy, P.C.S. and Shah, K.B., 2023. Intelligent controller design and fault prediction using machine learning model. International Transactions on Electrical Energy Systems, 2023.
Liu, J., Dong, X., Zhao, H. and Tian, Y., (2022). Predictive classifier for cardiovascular disease based on stacking model fusion. Processes, 10(4), p.749.
LK, S. S., Ahmed, S. T., Anitha, K., & Pushpa, M. K. (2021, November). COVID-19 outbreak based coronary heart diseases (CHD) prediction using SVM and risk factor validation. In 2021 Innovations in Power and Advanced Computing Technologies (i-PACT) (pp. 1-5). IEEE.
Muthappa, K.A., Nisha, A.S.A., Shastri, R., Avasthi, V. and Reddy, P.C.S., (2023). Design of high-speed, low-power non-volatile master slave flip flop (NVMSFF) for memory registers designs. Applied Nanoscience, pp.1-10.
Nadakinamani, R.G., Reyana, A., Kautish, S., Vibith, A.S., Gupta, Y., Abdelwahab, S.F. and Mohamed, A.W., (2022). Clinical data analysis for prediction of cardiovascular disease using machine learning techniques. Computational intelligence and neuroscience, 2022.
Reddy, P.C., Nachiyappan, S., Ramakrishna, V., Senthil, R. and Sajid Anwer, M.D., (2021). Hybrid model using scrum methodology for softwar development system. J Nucl Ene Sci Power Generat Techno, 10(9), p.2.
Reddy, P.C.S., Pradeepa, M., Venkatakiran, S., Walia, R. and Saravanan, M., (2021). Image and signal processing in the underwater environment. J Nucl Ene Sci Power Generat Techno, 10(9), p.2.
Reddy, P.C.S., Suryanarayana, G. and Yadala, S., (2022), November. Data analytics in farming: rice price prediction in Andhra Pradesh. In 2022 5th International Conference on Multimedia, Signal Processing and Communication Technologies (IMPACT) (pp. 1-5). IEEE.
Rustam, F., Ishaq, A., Munir, K., Almutairi, M., Aslam, N. and Ashraf, I., (2022). Incorporating CNN Features for Optimizing Performance of Ensemble Classifier for Cardiovascular Disease Prediction. Diagnostics, 12(6), p.1474.
Sabitha, R., Shukla, A.P., Mehbodniya, A., Shakkeera, L. and Reddy, P.C.S., (2022). A Fuzzy Trust Evaluation of Cloud Collaboration Outlier Detection in Wireless Sensor Networks. Adhoc & Sensor Wireless Networks, 53.
Sampath, S., Parameswari, R., Prasad, M.L., Kumar, D.A., Hussain, M.M. and Reddy, P.C.S., 2023, December. Ensemble Nonlinear Machine Learning Model for Chronic Kidney Diseases Prediction. In 2023 IEEE 3rd Mysore Sub Section International Conference (MysuruCon) (pp. 1-6). IEEE.
Shaker Reddy, P.C. and Sucharitha, Y., (2022). IoT-Enabled Energy-efficient Multipath Power Control for Underwater Sensor Networks. International Journal of Sensors Wireless Communications and Control, 12(6), pp.478-494.
Shaker Reddy, P.C. and Sucharitha, Y., (2023). A Design and Challenges in Energy Optimizing CR-Wireless Sensor Networks. Recent Advances in Computer Science and Communications (Formerly: Recent Patents on Computer Science), 16(5), pp.82-92.
Shanmugaraja, P., Bhardwaj, M., Mehbodniya, A., VALI, S. and Reddy, P.C.S., (2023). An Efficient Clustered M-path Sinkhole Attack Detection (MSAD) Algorithm for Wireless Sensor Networks. Adhoc & Sensor Wireless Networks, 55.
Sucharitha, Y. and Shaker Reddy, P.C., (2022). An autonomous adaptive enhancement method based on learning to optimize heterogeneous network selection. International Journal of Sensors Wireless Communications and Control, 12(7), pp.495-509.
Sucharitha, Y., Reddy, P.C.S. and Suryanarayana, G., (2023). Network Intrusion Detection of Drones Using Recurrent Neural Networks. Drone Technology: Future Trends and Practical Applications, pp.375-392.
Suneel, S., Balaram, A., Amina Begum, M., Umapathy, K., Reddy, P. C. S., & Talasila, V. (2024). Quantum mesh neural network model in precise image diagnosing. Optical and Quantum Electronics, 56(4), 559.
Tiwari, A., Chugh, A. and Sharma, A., (2022). Ensemble framework for cardiovascular disease prediction. Computers in Biology and Medicine, 146, p.105624.
Wong, D.Y., Lam, M.C., Ran, A. and Cheung, C.Y., (2022). Artificial intelligence in retinal imaging for cardiovascular disease prediction: current trends and future directions. Current Opinion in Ophthalmology, 33(5), pp.440-446.