Abhisheka, B.; Biswas, S. K. & Purkayastha, B. (2023). A comprehensive review on breast cancer detection, classification and segmentation using deep learning. Archives of Computational Methods in Engineering, 1-30.
Agrawal, A. (2023). Classification and Detection of Brain Tumors by Aquila Optimizer Hybrid Deep Learning Based Latent Features with Extreme Learner. In ITM Web of Conferences (53). EDP Sciences.
Ahmed, S. T.; Singh, D. K.; Basha, S. M.; Abouel Nasr, E.; Kamrani, A. K.; & Aboudaif, M. K. (2021). Neural network based mental depression identification and sentiments classification technique from speech signals: A COVID-19 Focused Pandemic Study. Frontiers in public health, 9, 781827.
Ashreetha, B.; Devi, M. R.; Kumar, U. P.; Mani, M. K.; Sahu, D. N. & Reddy, P. C. S. (2022). Soft optimization techniques for automatic liver cancer detection in abdominal liver images. International journal of health sciences, 6.
Chanchal, A. K.; Lal, S.; Barnwal, D.; Sinha, P.; Arvavasu, S. & Kini, J. (2023). Evolution of LiverNet 2. x: Architectures for automated liver cancer grade classification from H&E stained liver histopathological images. Multimedia Tools and Applications, 1-31.
Chillakuru, P.; Madiajagan, M.; Prashanth, K. V.; Ambala, S.; Shaker Reddy, P. C. & Pavan, J. (2023). Enhancing wind power monitoring through motion deblurring with modified GoogleNet algorithm. Soft Computing, 1-11.
Cui, C.; Yang, H.; Wang, Y.; Zhao, S.; Asad, Z.; Coburn, L. A. & Huo, Y. (2023). Deep multi-modal fusion of image and non-image data in disease diagnosis and prognosis: a review. Progress in Biomedical Engineering.
Das, A. & Mohanty, M. N. (2022). Design of ensemble recurrent model with stacked fuzzy ARTMAP for breast cancer detection. Applied Computing and Informatics.
Dash, P. B.; Behera, H. S. & Senapati, M. R. (2022). Breast Cancer Mammography Identification with Deep Convolutional Neural Network. In Computational Intelligence in Data Mining: Proceedings of ICCIDM 2021 (pp. 741-752). Singapore: Springer Nature Singapore.
de Oliveira, C. I.; do Nascimento, M. Z.; Roberto, G. F.; Tosta, T. A.; Martins, A. S. & Neves, L. A. (2023). Hybrid models for classifying histological images: An association of deep features by transfer learning with ensemble classifier. Multimedia Tools and Applications, 1-24.
Deivasigamani, S.; Rani, A.J.M.; Natchadalingam, R.; Vijayakarthik, P.; Kumar, G.B.S. and Reddy, P.C.S. (2023), August. Crop Yield Prediction Using Deep Reinforcement Learning. In 2023 Second International Conference on Trends in Electrical, Electronics, and Computer Engineering (TEECCON) (pp. 137-142). IEEE.
Himavarnika, A. & Prasanthi, P. (2023). A Statistical Modelling to Detect Carcinoma Cancer in Its Incipient Stages in Healthcare. Journal of Coastal Life Medicine, 11, 468-481.
Iqbal, M. S.; Ahmad, W.; Alizadehsani, R.; Hussain, S. & Rehman, R. (2022, November). Breast Cancer Dataset, Classification and Detection Using Deep Learning. In Healthcare (10) 12, 2395.
Jabeen, K.; Khan, M. A.; Alhaisoni, M.; Tariq, U.; Zhang, Y. D.; Hamza, A. & Damaševičius, R. (2022). Breast cancer classification from ultrasound images using probability-based optimal deep learning feature fusion. Sensors, 22(3), 807.
Jakhar, A. K.; Gupta, A. & Singh, M. (2023). SELF: a stacked-based ensemble learning framework for breast cancer classification. Evolutionary Intelligence, 1-16.
Kumar, G. R.; Reddy, R. V.; Jayarathna, M.; Pughazendi, N.; Vidyullatha, S. & Reddy, P. C. S. (2023). Web application based Diabetes prediction using Machine Learning. In 2023 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI) pp. 1-7, IEEE.
Kumar, K.; Pande, S.V.; Kumar, T.; Saini, P.; Chaturvedi, A.; Reddy, P.C.S. & Shah, K.B. (2023). Intelligent controller design and fault prediction using machine learning model. International Transactions on Electrical Energy Systems, 2023.
Kumar, S. S.; Ahmed, S. T.; Xin, Q.; Sandeep, S.; Madheswaran, M. & Basha, S. M. (2022). Unstructured Oncological Image Cluster Identification Using Improved Unsupervised Clustering Techniques. Computers, Materials & Continua, 72(1).
Latha, S. B.; Dastagiraiah, C.; Kiran, A.; Asif, S.; Elangovan, D. & Reddy, P. C. S. (2023, August). An Adaptive Machine Learning model for Walmart sales prediction. In 2023 International Conference on Circuit Power and Computing Technologies (ICCPCT) (pp. 988-992). IEEE.
LK, S. S.; Ahmed, S. T.; Anitha, K. & Pushpa, M. K. (2021, November). COVID-19 outbreak based coronary heart diseases (CHD) prediction using SVM and risk factor validation. In 2021 Innovations in Power and Advanced Computing Technologies (i-PACT) (pp. 1-5). IEEE.
Lokesh, S.; Priya, A.; Sakhare, D. T.; Devi, R. M.; Sahu, D. N. & Reddy, P. C. S. (2022). CNN based deep learning methods for precise analysis of cardiac arrhythmias. International journal of health sciences, 6.
Madhavi, G. B.; Bhavani, A. D.; Reddy, Y. S.; Kiran, A.; Chitra, N. T. & Reddy, P. C. S. (2023, June). Traffic Congestion Detection from Surveillance Videos using Deep Learning. In 2023 International Conference on Computer, Electronics & Electrical Engineering & their Applications (IC2E3) pp. 1-5, IEEE.
Muduli, D.; Kumar, R. R.; Pradhan, J. & Kumar, A. (2023). An empirical evaluation of extreme learning machine uncertainty quantification for automated breast cancer detection. Neural Computing and Applications, 1-16.
Muthappa, K. A.; Nisha, A. S. A.; Shastri, R.; Avasthi, V. & Reddy, P. C. S. (2023). Design of high-speed, low-power non-volatile master slave flip flop (NVMSFF) for memory registers designs. Applied Nanoscience, 1-10.
Nemade, V.; Pathak, S. & Dubey, A. K. (2023). Deep learning-based ensemble model for classification of breast cancer. Microsystem Technologies, 1-15.
Nomani, A.; Ansari, Y.; Nasirpour, M. H.; Masoumian, A.; Pour, E. S. & Valizadeh, A. (2022). PSOWNNs-CNN: a computational radiology for breast cancer diagnosis improvement based on image processing using machine learning methods. Computational Intelligence and Neuroscience, 2022.
PACAL, İ. (2022). Deep learning approaches for classification of breast cancer in ultrasound (US) images. Journal of the Institute of Science and Technology, 12(4), 1917-1927.
Pathan, R. K.; Alam, F. I.; Yasmin, S.; Hamd, Z. Y.; Aljuaid, H.; Khandaker, M. U. & Lau, S. L. (2022, November). Breast Cancer Classification by Using Multi-Headed Convolutional Neural Network Modeling. In Healthcare p. 2367. MDPI.
Patra, A.; Behera, S. K.; Barpanda, N. K. & Sethy, P. K. (2022). Effect of Microscopy Magnification Towards Grading of Breast Invasive Carcinoma: An Experimental Analysis on Deep Learning and Traditional Machine Learning Methods. Ingénierie des Systèmes d'Information, 27(4).
Rana, M. & Bhushan, M. (2023). Classifying breast cancer using transfer learning models based on histopathological images. Neural Computing and Applications, 35(19), 14243-14257.
Rao, K. R.; Prasad, M. L.; Kumar, G. R.; Natchadalingam, R.; Hussain, M. M. & Reddy, P. C. S. (2023, August). Time-Series Cryptocurrency Forecasting Using Ensemble Deep Learning. In 2023 International Conference on Circuit Power and Computing Technologies (ICCPCT) (pp. 1446-1451). IEEE.
Sucharitha, Y.; Reddy, P. C. S. & Chitti, T. N. (2023, July). Deep learning based framework for crop yield prediction. In AIP Conference Proceedings 1 (2548), AIP Publishing.
Suneel, S.; Balaram, A.; Amina Begum, M.; Umapathy, K.; Reddy, P. C. S. & Talasila, V. (2024). Quantum mesh neural network model in precise image diagnosing. Optical and Quantum Electronics, 56(4), 559.
Yadala, S.; Pundru, C. S. R. & Solanki, V. K. (2023, March). A Novel Private Encryption Model in IoT Under Cloud Computing Domain. In The International Conference on Intelligent Systems & Networks pp. 263-270. Singapore: Springer Nature Singapore.
Zahoor, S.; Shoaib, U. & Lali, I. U. (2022). Breast cancer mammograms classification using deep neural network and entropy-controlled whale optimization algorithm. Diagnostics, 12(2), 557.