Ahmed, S. T. (2017, June). A study on multi objective optimal clustering techniques for medical datasets. In 2017 international conference on intelligent computing and control systems (ICICCS) (pp. 174-177). IEEE.
Ahmed, S. T., Singh, D. K., Basha, S. M., Abouel Nasr, E., Kamrani, A. K., & Aboudaif, M. K. (2021). Neural network based mental depression identification and sentiments classification technique from speech signals: A COVID-19 Focused Pandemic Study. Frontiers in public health, 9, 781827.
Ahmed, S. T., Sreedhar Kumar, S., Anusha, B., Bhumika, P., Gunashree, M., & Ishwarya, B. (2020). A generalized study on data mining and clustering algorithms. New Trends in Computational Vision and Bio-inspired Computing: Selected works presented at the ICCVBIC 2018, Coimbatore, India, 1121-1129.
Alehegn, M., Joshi, R., & Alehegn, M. (2017). Analysis and prediction of diabetes diseases using machine learning algorithm: Ensemble approach. International Research Journal of Engineering and Technology, 4(10), 426-436.
Alehegn, M., Joshi, R., & Mulay, P. (2018). Analysis and prediction of diabetes mellitus using machine learning algorithm. International Journal of Pure and Applied Mathematics, 118(9), 871-878.
Choudhary, S., Kumar, A., & Choudhary, S. (2022, September). Prediction and Comparison of Diabetes with Logistic Regression, Naïve Bayes, Random Forest, and Support Vector Machine. In International Conference on Innovations in Computer Science and Engineering (pp. 273-283). Singapore: Springer Nature Singapore.
Choudhury, A., & Gupta, D. (2019). A survey on medical diagnosis of diabetes using machine learning techniques. In Recent Developments in Machine Learning and Data Analytics: IC3 2018 (pp. 67-78). Springer Singapore.
Doğru, A., Buyrukoğlu, S., & Arı, M. (2023). A hybrid super ensemble learning model for the early-stage prediction of diabetes risk. Medical & Biological Engineering & Computing, 61(3), 785-797.
Hasan, M. K., Alam, M. A., Das, D., Hossain, E., & Hasan, M. (2020). Diabetes prediction using ensembling of different machine learning classifiers. IEEE Access, 8, 76516-76531.
Huang, Y. P., & Nashrullah, M. (2016, November). SVM-based decision tree for medical knowledge representation. In 2016 International Conference on Fuzzy Theory and Its Applications (iFuzzy) (pp. 1-6). IEEE.
Karimian, G., Petelos, E., & Evers, S. M. (2022). The ethical issues of the application of artificial intelligence in healthcare: a systematic scoping review. AI and Ethics, 2(4), 539-551.
Kee, O. T., Harun, H., Mustafa, N., Abdul Murad, N. A., Chin, S. F., Jaafar, R., & Abdullah, N. (2023). Cardiovascular complications in a diabetes prediction model using machine learning: a systematic review. Cardiovascular Diabetology, 22(1), 13.
Khanam, J. J., & Foo, S. Y. (2021). A comparison of machine learning algorithms for diabetes prediction. Ict Express, 7(4), 432-439.
Lai, H., Huang, H., Keshavjee, K., Guergachi, A., & Gao, X. (2019). Predictive models for diabetes mellitus using machine learning techniques. BMC endocrine disorders, 19, 1-9.
Mansoori, A., Sahranavard, T., Hosseini, Z. S., Soflaei, S. S., Emrani, N., Nazar, E. & Mobarhan, M. G. (2023). Prediction of type 2 diabetes mellitus using hematological factors based on machine learning approaches: a cohort study analysis. Scientific Reports, 13(1), 663.
Meng, X. H., Huang, Y. X., Rao, D. P., Zhang, Q., & Liu, Q. (2013). Comparison of three data mining models for predicting diabetes or prediabetes by risk factors. The Kaohsiung journal of medical sciences, 29(2), 93-99.
Mujumdar, A., & Vaidehi, V. (2019). Diabetes prediction using machine learning algorithms. Procedia Computer Science, 165, 292-299.
Sandhya, G., Charan, P., Ansari, H. F., Kathiravan, M. N., Suganthi, D., & Nishant, N. (2023, July). Integrating Technology for Sustainable Agriculture: Enhancing Crop Productivity while Minimising Pesticide Usage using Image Processing & IoT. In 2023 4th International Conference on Electronics and Sustainable Communication Systems (ICESC) (pp. 462-468). IEEE.
Sarwar, M. A., Kamal, N., Hamid, W., & Shah, M. A. (2018, September). Prediction of diabetes using machine learning algorithms in healthcare. In 2018 24th international conference on automation and computing (ICAC) (pp. 1-6). IEEE.
Shrivastava, A., Chakkaravarthy, M., & Asif Shah, M. (2022). A Novel Approach Using Learning Algorithm for Parkinson’s Disease Detection with Handwritten Sketches’. Cybernetics and Systems, 1-17.
Shrivastava, A., Chakkaravarthy, M., & Shah, M. A. (2023). A new machine learning method for predicting systolic and diastolic blood pressure using clinical characteristics. Healthcare Analytics, 4, 100219.
Shrivastava, A., Chakkaravarthy, M., & Shah, M. A. (2023). Health Monitoring based Cognitive IoT using Fast Machine Learning Technique. International Journal of Intelligent Systems and Applications in Engineering, 11(6s), 720-729.
Sinha, A., & Singh, S. (2021). Detailed analysis of medical IoT using wireless body sensor network and application of IoT in healthcare. Human Communication Technology: Internet of Robotic Things and Ubiquitous Computing, 401-434.
Sinha, A., Bhargavi, M., Singh, N. K., Garg, N., Pal, S., & Verma, A. (2022, December). Comparative Analysis of Machine Learning and Data Mining based Multi-Models for Diabetes Risk Prediction. In 2022 IEEE International Conference for Women in Innovation, Technology & Entrepreneurship (ICWITE) (pp. 1-7). IEEE.
Wang, Q., Cao, W., Guo, J., Ren, J., Cheng, Y., & Davis, D. N. (2019). DMP_MI: an effective diabetes mellitus classification algorithm on imbalanced data with missing values. IEEE access, 7, 102232-102238.
Whig, P., Gupta, K., Jiwani, N., Jupalle, H., Kouser, S., & Alam, N. (2023). A novel method for diabetes classification and prediction with Pycaret. Microsystem Technologies, 1-9.
Zheng, T., Xie, W., Xu, L., He, X., Zhang, Y., You, M. & Chen, Y. (2017). A machine learning-based framework to identify type 2 diabetes through electronic health records. International journal of medical informatics, 97, 120-127.