Anish, C.M., & Majhi, B. (2015). Net asset value prediction using FLANN model. International Journal of Science and Research, 4(2), 2222–2227.
Anish, C.M., & Majhi, B. (2016). Prediction of mutual fund net asset value using low complexity feedback neural network.
IEEE International Conference on Current Trends in Advanced Computing, 1–5.
https://doi.org/10.1109/ICCTAC.2016.7567345.
Bressan, G. M., de Azevedo, B. C. F., & de Souza, R. M. (2020). A fuzzy approach for diabetes mellitus type 2 classification. Brazilian Archives of Biology and Technology, 63. https://doi.org/10.1590/1678-4324-2020180742
Devi, U. R., & Uma, K. (2019). A Study on Fuzzy Expert System for Diagnosis of Diabetes Mellitus. International Journal of Applied Engineering Research (IJAER), 14(4), 129–139. https://www.ripublication.com/ijaerspl2019/ijaerv14n4spl_16.pdf
Galicia, A., Talavera-Llames, R., Troncoso, A., Koprinska, I., & Martinez-Alvarez, F. (2019). Multi- step forecasting for big data time series based on ensemble learning.
Knowledge-Based Systems, 16, 830-841.
https://doi.org/10.1016/j.knosys.2018.10.009.
Geman, O., Chiuchisan, I., & Toderean, R. (2017). Application of Adaptive Neuro-Fuzzy Inference System for diabetes classification and prediction. 2017 E-Health and Bioengineering Conference, EHB 2017, Dm, 639–642. https://doi.org/10.1109/EHB.2017.7995505
Henrique, B.M., Sobreiro, V.A., & Kimura, H. (2019). Literature review: machine learning techniques applied to financial market prediction.
Expert Syst. Appl, 124, 226–251.
https://doi.org/10.1016/J.ESWA.2019.01.012.
Hota, S., Jena, S.K., Gupta, B.K., & Mishra, D. (2021). An Empirical Comparative Analysis of NAV Forecasting Using Machine Learning Techniques. In: Mishra, D. (eds.), Intelligent and Cloud Computing. Smart Innovation,
Systems and Technologies, 153, 565-572.
https://doi.org/10.1007/978-981-15-6202-0_58.
Hota, S., Pati, S.P., & Satapathy, P. (2021). Forecasting of Net Asset Value of Indian Mutual Funds Using Firefly Algorithm-Based Neural Network Model. In: Sharma, R. et al. (eds.), Green Technology for Smart City and Society.
Lecture Notes in Networks and Systems, 151.
https://doi.org/10.1007/978-981-15-8218-9_18.
Hota, S., Satapathy, P., Pati, S. P., & Mishra, D. (2018). Net Asset Value Prediction Using Extreme Learning Machine with Dolphin Swarm Algorithm. 2nd International Conference on Data
Science and Business Analytics (ICDSBA), 13-18.
https://doi.org/10.1109/ICDSBA.2018.00010.
Howsalya Devi, R. D., Bai, A., & Nagarajan, N. (2020). A novel hybrid approach for diagnosing diabetes mellitus using farthest first and support vector machine algorithms. Obesity Medicine, 17, 100152. https://doi.org/10.1016/j.obmed.2019.100152
Indro, D. C., Jiang, C. X., Patuwo, B. E., & Zhang, G. P. (1999). Predicting mutual fund performance using Artificial Neural Networks,
Omega, 27(3), 373-380.
https://doi.org/10.1016/S0305-0483(98)00048-6.
Khalil, R. M., & Al-Jumaily, A. (2017). Machine learning based prediction of depression among type 2 diabetic patients. Proceedings of the 2017 12th International Conference on Intelligent Systems and Knowledge Engineering, ISKE 2017, 2018-Janua, 1–5. https://doi.org/10.1109/ISKE.2017.8258766
Khan, T., Singh, K., Manjul, M., Ahmad, M. N., Zain, A. M., & Ahmadian, A. (2022). A Temperature-Aware Trusted Routing Scheme for Sensor Networks: Security Approach. Computers & Electrical Engineering, 98, 107735.
Kumar, A., Singh, K., & Khan, T. (2021). L-RTAM: Logarithm based reliable trust assessment model for WBSNs. Journal of Discrete Mathematical Sciences and Cryptography, 24(6), 1701-1716.
Kumar, A., Singh, K., Khan, T., Ahmadian, A., Saad, M. H. M., & Manjul, M. (2021). ETAS: an efficient trust assessment scheme for BANs. IEEE Access, 9, 83214-83233.
Law, A., Evani, B., & Ghosh, A. (2019). Optimized Functional Link Artificial Neural Network for Multi-label Classification. ICONIP Proceedings. Australian Journal of Intelligent Information Processing Systems, 16, 56-63
Lin, H.-S., Chen, M.-L., Tong, C.-C., & Dai, J.-W. (2007). Using grey and RBFNN to predict the Net Asset Value of single nation equity funds-a case study of Taiwan, US, and Japan. IEEE
International Conference on Grey Systems and Intelligent Services, 892-897.
http://dx.doi.org/10.1109/GSIS.2007.4443402.
Lukmanto, R. B., Suharjito, Nugroho, A., & Akbar, H. (2019). Early detection of diabetes mellitus using feature selection and fuzzy support vector machine. Procedia Computer Science, 157, 46–54. https://doi.org/10.1016/j.procs.2019.08.140
Majhi, B., Anish, C.M., & Majhi, R. (2021). On development of novel hybrid and robust adaptive models for net asset value prediction. Journal of King Saud University- Computer and Information Sciences, 33(6), 647-657.
Mili, F., & Hamdi, M. (2013). A comparative study of expansion functions for evolutionary hybrid functional link artificial neural networks for data mining and classification. International Conference on Computer Applications Technology (ICCAT), 1-8.
https://doi.org/10.1109/ICCAT.2013.6521977.
Misra S., Li, H. (2020). Chapter 9 - Noninvasive fracture characterization based on the classification of sonic wave travel times. Machine Learning for Subsurface Characterization. Gulf Professional Publishing. 243-287.
https://doi.org/10.1016/B978-0-12-817736-5.00009-0.
Mohanty, S., & Dash, R. (2021). A flower pollination algorithm based Chebyshev polynomial neural network for net asset value prediction.
Evolutionary Intelligence, 1-17.
https://doi.org/10.1007/s12065-021-00645-3.
Narula, A., Jha, C.B., & Panda, G. (2015). Development and Performance Evaluation of Three Novel Prediction Models for Mutual Fund NAV Prediction. Annual Research Journal of SymbiosisCentre for Management Studies, 3, 227-238.
Niswati, Z., Mustika, F. A., & Paramita, A. (2018). Fuzzy logic implementation for diagnosis of Diabetes Mellitus disease at Puskesmas in East Jakarta. Journal of Physics: Conference Series, 1114 (1). https://doi.org/10.1088/1742-6596/1114/1/012107
Oreshkin, B.N., Carpov, D., Chapados, N., & Bengio, Y. (2020). N-BEATS: Neural basis expansion analysis for interpretable time series forecasting. ArXiv, abs/1905.10437.
Priyadarshini, E. (2015). A comparative analysis of prediction using Artifcial Neural network and auto regressive integrated moving average. ARPN Journal of Engineering and Applied Sciences, 10(7), 3078-3081.
Priyadarshini, E., & Babu, A.C. (2011). Prediction of the Net Asset Aalues of Indian mutual funds using Auto-Regressive Integrated Moving Average (ARIMA).Journal of Computer Application Research and development, 1(1). 43-48.
Priyadarshini, E., & Babu, A.C. (2012). A Comparative Analysis for forecasting the NAV’s of Indian Mutual Fund using Multiple Regression Analysis and Artificial Neural Networks. International Journal of Trade, Economics and Finance, 3(5), 347-350. https://doi.org/ 10.7763/IJTEF.2012.V3.225.
Raj, R. S., Sanjay, D. S., Kusuma, M., & Sampath, S. (2019). Comparison of Support Vector Machine and Naïve Bayes Classifiers for Predicting Diabetes. 1st International Conference on Advanced Technologies in Intelligent Control, Environment, Computing and Communication Engineering, ICATIECE 2019, 41–45. https://doi.org/10.1109/ICATIECE45860.2019.9063792
Rajeswari, A. M., Sidhika, M. S., Kalaivani, M., & Deisy, C. (2018). Prediction of Prediabetes using Fuzzy Logic based Association Classification. Proceedings of the International Conference on Inventive Communication and Computational Technologies, ICICCT 2018, Icicct, 782–787. https://doi.org/10.1109/ICICCT.2018.8473159
Ray, P., & Vina, V. (2004). Neural Network Models for Forecasting Mutual Fund Net Asset Value. 8th Capital Markets Conference, Indian Institute of Capital Markets Paper.
http://dx.doi.org/10.2139/ssrn.872269.
Rout, M., Koudjonou, K.M., & Satapathy, S.C. (2021). Analysis of net asset value prediction using low complexity neural network with various expansion techniques.
Evolutionary Intelligence, 14 (2).
https://doi.org/10.1007/s12065-020-00365-0.
Santos Júnior, D.S.de O., De Oliveira, J.F.L., & De Mattos Neto, P.S.G. (2019). An intelligent hybridization of ARIMA with machine learning models for time series forecasting. Knowledge-Based Systems, 175, 72-86.
https://doi.org/10.1016/j.knosys.2019.03.011.
Sarwar, M. A., Kamal, N., Hamid, W., & Shah, M. A. (2018). Prediction of diabetes using machine learning algorithms in healthcare. ICAC 2018 - 2018 24th IEEE International Conference on Automation and Computing: Improving Productivity through Automation and Computing, September, 1–6. https://doi.org/10.23919/IConAC.2018.8748992
Shakeel, M. R., Siddiqui, T. A., & Alam, S. (2023). Feature Selection in Corporate Bankruptcy Prediction Using ML Techniques: A Systematic Literature Review. Advances in Signal Processing, Embedded Systems and IoT. Lecture Notes in Electrical Engineering, 992. pringer, Singapore.
https://doi.org/10.1007/978-981-19-8865-3_32
Siddiqui, T. A., Shakeel, M. R., & Alam, S. (2023). Mena Sukuk Price Prediction Modelling using Prophet Algorithm. Intelligent Data Analytics, IoT, and Blockchain, CRC press. Taylor & Francis Group.
Swain, A., Mohanty, S., & Das, A. (2013). Comparative Risk Analysis on Prediction of Diabetes Mellitus Using Machine Learning Approach. 1, 3312–3317. International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT) - 2016
Thakkar, H., Shah, V., Yagnik, H., & Shah, M. (2021). Comparative anatomization of data mining and fuzzy logic techniques used in diabetes prognosis. Clinical EHealth, 4, 12–23. https://doi.org/10.1016/j.ceh.2020.11.001
Undre, P., Kaur, H., & Patil, P. (2015). Improvement in prediction rate and accuracy of diabetic diagnosis system using fuzzy logic hybrid combination. 2015 International Conference on Pervasive Computing: Advance Communication Technology and Application for Society, ICPC 2015, 00(c). https://doi.org/10.1109/PERVASIVE.2015.7087029
Verma, D, M. N. (2017). Using Data mining classification Techniques. 2017 International Conference on Intelligent Sustainable Systems (ICISS), Iciss, 533–538.
Vijiyakumar, K., Lavanya, B., Nirmala, I., & Sofia Caroline, S. (2019). Random forest algorithm for the prediction of diabetes. 2019 IEEE International Conference on System, Computation, Automation and Networking, ICSCAN 2019, 1–5.
https://doi.org/10.1109/ICSCAN.2019.8878802
Yan, H., Liu, W., Liu, X., Kong, H., & Lv, C. (2010). Predicting Net Asset Value of Investment FundBased on BP Neural Network. IEEE International Conference on Computer Application and System Modeling, 10, pp. 635-637.
https://doi.org/10.1109/ICCASM.2010.5622625