Document Type : Research Paper
Authors
Department of Computer Science and Information Technology, School of Technology, Maulana Azad National Urdu University, Hyderabad, Telangana, India-500032.
Abstract
Keywords
Bressan, G. M., de Azevedo, B. C. F., & de Souza, R. M. (2020). A fuzzy approach for diabetes mellitus type 2 classification. Brazilian Archives of Biology and Technology, 63. https://doi.org/10.1590/1678-4324-2020180742
Devi, U. R., & Uma, K. (2019). A Study on Fuzzy Expert System for Diagnosis of Diabetes Mellitus. International Journal of Applied Engineering Research (IJAER), 14(4), 129–139. https://www.ripublication.com/ijaerspl2019/ijaerv14n4spl_16.pdf
Geman, O., Chiuchisan, I., & Toderean, R. (2017). Application of Adaptive Neuro-Fuzzy Inference System for diabetes classification and prediction. 2017 E-Health and Bioengineering Conference, EHB 2017, Dm, 639–642. https://doi.org/10.1109/EHB.2017.7995505
Howsalya Devi, R. D., Bai, A., & Nagarajan, N. (2020). A novel hybrid approach for diagnosing diabetes mellitus using farthest first and support vector machine algorithms. Obesity Medicine, 17, 100152. https://doi.org/10.1016/j.obmed.2019.100152
Khalil, R. M., & Al-Jumaily, A. (2017). Machine learning based prediction of depression among type 2 diabetic patients. Proceedings of the 2017 12th International Conference on Intelligent Systems and Knowledge Engineering, ISKE 2017, 2018-Janua, 1–5. https://doi.org/10.1109/ISKE.2017.8258766
Khan, T., Singh, K., Manjul, M., Ahmad, M. N., Zain, A. M., & Ahmadian, A. (2022). A Temperature-Aware Trusted Routing Scheme for Sensor Networks: Security Approach. Computers & Electrical Engineering, 98, 107735.
Kumar, A., Singh, K., & Khan, T. (2021). L-RTAM: Logarithm based reliable trust assessment model for WBSNs. Journal of Discrete Mathematical Sciences and Cryptography, 24(6), 1701-1716.
Kumar, A., Singh, K., Khan, T., Ahmadian, A., Saad, M. H. M., & Manjul, M. (2021). ETAS: an efficient trust assessment scheme for BANs. IEEE Access, 9, 83214-83233.
Lukmanto, R. B., Suharjito, Nugroho, A., & Akbar, H. (2019). Early detection of diabetes mellitus using feature selection and fuzzy support vector machine. Procedia Computer Science, 157, 46–54. https://doi.org/10.1016/j.procs.2019.08.140
Niswati, Z., Mustika, F. A., & Paramita, A. (2018). Fuzzy logic implementation for diagnosis of Diabetes Mellitus disease at Puskesmas in East Jakarta. Journal of Physics: Conference Series, 1114(1). https://doi.org/10.1088/1742-6596/1114/1/012107
Raj, R. S., Sanjay, D. S., Kusuma, M., & Sampath, S. (2019). Comparison of Support Vector Machine and Naïve Bayes Classifiers for Predicting Diabetes. 1st International Conference on Advanced Technologies in Intelligent Control, Environment, Computing and Communication Engineering, ICATIECE 2019, 41–45. https://doi.org/10.1109/ICATIECE45860.2019.9063792
Rajeswari, A. M., Sidhika, M. S., Kalaivani, M., & Deisy, C. (2018). Prediction of Prediabetes using Fuzzy Logic based Association Classification. Proceedings of the International Conference on Inventive Communication and Computational Technologies, ICICCT 2018, Icicct, 782–787. https://doi.org/10.1109/ICICCT.2018.8473159
Sarwar, M. A., Kamal, N., Hamid, W., & Shah, M. A. (2018). Prediction of diabetes using machine learning algorithms in healthcare. ICAC 2018 - 2018 24th IEEE International Conference on Automation and Computing: Improving Productivity through Automation and Computing, September, 1–6. https://doi.org/10.23919/IConAC.2018.8748992
Swain, A., Mohanty, S., & Das, A. (2013). COMPARATIVE RISK ANALYSIS ON PREDICTION OF DIABETES MELLITUS USING MACHINE LEARNING APPROACH. 1, 3312–3317. International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT) - 2016
Thakkar, H., Shah, V., Yagnik, H., & Shah, M. (2021). Comparative anatomization of data mining and fuzzy logic techniques used in diabetes prognosis. Clinical EHealth, 4, 12–23. https://doi.org/10.1016/j.ceh.2020.11.001
Undre, P., Kaur, H., & Patil, P. (2015). Improvement in prediction rate and accuracy of diabetic diagnosis system using fuzzy logic hybrid combination. 2015 International Conference on Pervasive Computing: Advance Communication Technology and Application for Society, ICPC 2015, 00(c). https://doi.org/10.1109/PERVASIVE.2015.7087029
Verma, D, M. N. (2017). using Data mining classification Techniques. 2017 International Conference on Intelligent Sustainable Systems (ICISS), Iciss, 533–538.
Vijiyakumar, K., Lavanya, B., Nirmala, I., & Sofia Caroline, S. (2019). Random forest algorithm for the prediction of diabetes. 2019 IEEE International Conference on System, Computation, Automation and Networking, ICSCAN 2019, 1–5. https://doi.org/10.1109/ICSCAN.2019.8878802