Abdel-Nabi, H., Al-Naymat, G., Ali, M. Z., & Awajan, A. (2023). HcLSH: A Novel Non-Linear Monotonic Activation Function for Deep Learning Methods. IEEE Access, 11, 47794–47815. https://doi.org/10.1109/ACCESS.2023.3276298
                                                                                                                Adeli, H., & Ghosh-Dastidar, S. (2010). Wavelet-Chaos Methodology for Analysis of EEGs and EEG Sub-Bands. Automated EEG-Based Diagnosis of Neurological Disorders, 54(2), 119–141. https://doi.org/10.1201/9781439815328-c7
                                                                                                                Ahani, A., Wahbeh, H., Nezamfar, H., Miller, M., Erdogmus, D., & Oken, B. (2014). Quantitative change of EEG and respiration signals during mindfulness meditation. In Journal of NeuroEngineering and Rehabilitation (11). http://www.jneuroengrehab.com/content/11/1/87
                                                                                                                Akshay K, R., Sundar, S., & Muhammed Shanir, P. P. (2022). Emotion recognition from EEG signals using machine learning model. 2022 5th International Conference on Multimedia, Signal Processing and Communication Technologies, IMPACT 2022. https://doi.org/10.1109/IMPACT55510.2022.10029284
                                                                                                                Alotaiby, T., El-Samie, F. E. A., Alshebeili, S. A., & Ahmad, I. (2015). A review of channel selection algorithms for EEG signal processing. Eurasip Journal on Advances in Signal Processing, 2015(1). https://doi.org/10.1186/s13634-015-0251-9
                                                                                                                Avvaru, S., & Parhi, K. K. (2023). Effective Brain Connectivity Extraction by Frequency-Domain Convergent Cross-Mapping (FDCCM) and its Application in Parkinson' s Disease Classification. IEEE Transactions on Biomedical Engineering. https://doi.org/10.1109/TBME.2023.3250355
                                                                                                                Braboszcz, C., Rael Cahn, B., Levy, J., Fernandez, M., & Delorme, A. (2017). Increased gamma brainwave amplitude compared to control in three different meditation traditions. PLoS ONE, 12(1). https://doi.org/10.1371/journal.pone.0170647
                                                                                                                Chen, B., Guan, J., Li, Z., & Zhou, Z. (2023). Robust Feature Extraction via ℓ ∞-Norm based Nonnegative Tucker Decomposition. IEEE Transactions on Circuits and Systems for Video Technology. https://doi.org/10.1109/TCSVT.2023.3275985
                                                                                                                Chen, Y., Chang, R., & Guo, J. (2021). Effects of Data Augmentation Method Borderline-SMOTE on Emotion Recognition of EEG Signals Based on Convolutional Neural Network. IEEE Access, 9, 47491–47502. https://doi.org/10.1109/ACCESS.2021.3068316
                                                                                                                Delorme, A., Sejnowski, T., & Makeig, S. (2007). Enhanced detection of artifacts in EEG data using higher-order statistics and independent component analysis. NeuroImage, 34(4), 1443–1449. https://doi.org/10.1016/j.neuroimage.2006.11.004
                                                                                                                Dong, H. W., Mills, C., Knight, R. T., & Kam, J. W. Y. (2021). Detection of mind wandering using EEG: Within and across individuals. PLoS ONE, 16 (5 May 2021). https://doi.org/10.1371/journal.pone.0251490
                                                                                                                Farokhah, L., Sarno, R., & Fatichah, C. (2023). Simplified 2D CNN Architecture with Channel Selection for Emotion Recognition Using EEG Spectrogram. IEEE Access, 11, 46330–46343. https://doi.org/10.1109/ACCESS.2023.3275565
                                                                                                                Gevins, A. S., Yeager, C. L., Diamond, S. L., Spire, J. P., Zeitlin, G. M., & Gevins, A. H. (1975). Automated Analysis of the Electrical Activity of the Human Brain (EEG): A Progress Report. Proceedings of the IEEE, 63(10), 1382–1399. https://doi.org/10.1109/PROC.1975.9966
                                                                                                                Ghaemi, A., Rashedi, E., Pourrahimi, A. M., Kamandar, M., & Rahdari, F. (2017). Automatic channel selection in EEG signals for classification of left or right hand movement in Brain Computer Interfaces using improved binary gravitation search algorithm. Biomedical Signal Processing and Control, 33, 109–118. https://doi.org/10.1016/j.bspc.2016.11.018
                                                                                                                Houran, M. A., Badry, E. A., Abdel-Raman, A. B., Ali, M. H. E., Hassan, A., & Atallah, H. A. (n.d.). Developing Novel Robust Loss Functions-Based Classification Layers for DLLSTM Neural Networks. https://doi.org/10.1109/ACCESS.2017.Doi
                                                                                                                Hsu, W. Y., & Cheng, Y. W. (2023). EEG-Channel-Temporal-Spectral-Attention Correlation for Motor Imagery EEG Classification. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 31, 1659–1669. https://doi.org/10.1109/TNSRE.2023.3255233
                                                                                                                Kora, P., Meenakshi, K., Swaraja, K., Rajani, A., & Raju, M. S. (2021). EEG based interpretation of human brain activity during yoga and meditation using machine learning: A systematic review. In Complementary Therapies in Clinical Practice (43). Churchill Livingstone. https://doi.org/10.1016/j.ctcp.2021.101329
                                                                                                                Lai, C. Q., Ibrahim, H., Abdullah, M. Z., Abdullah, J. M., Suandi, S. A., & Azman, A. (2018). Literature survey: Recording set up for electroencephalography (EEG) acquisition. 2018 IEEE Symposium on Computer Applications & Industrial Electronics (ISCAIE), 333–338. https://doi.org/10.1109/ISCAIE.2018.8405494
                                                                                                                Mai, N.-D., Nguyen, H.-T., & Chung, W.-Y. (2023). Real-Time On-Chip Machine-Learning-Based Wearable Behind-The-Ear Electroencephalogram Device for Emotion Recognition. IEEE Access, 11, 47258–47271. https://doi.org/10.1109/ACCESS.2023.3276244
                                                                                                                Majid Mehmood, R., Du, R., & Lee, H. J. (2017). Optimal Feature Selection and Deep Learning Ensembles Method for Emotion Recognition from Human Brain EEG Sensors. IEEE Access, 5, 14797–14806. https://doi.org/10.1109/ACCESS.2017.2724555
                                                                                                                Mattioli, F., Porcaro, C., & Baldassarre, G. (2021). A 1D CNN for high accuracy classification and transfer learning in motor imagery EEG-based brain-computer interface. Journal of Neural Engineering, 18(6). https://doi.org/10.1088/1741-2552/ac4430
                                                                                                                Moctezuma, L. A., & Molinas, M. (2020). EEG Channel-Selection Method for Epileptic-Seizure Classification Based on Multi-Objective Optimization. Frontiers in Neuroscience, 14. https://doi.org/10.3389/fnins.2020.00593
                                                                                                                Pandey, P., & Prasad Miyapuram, K. (2020). Classifying Oscillatory Signatures of Expert vs NonExpert Meditators. 2020 International Joint Conference on Neural Networks (IJCNN), 1–7. https://doi.org/10.1109/IJCNN48605.2020.9207340
                                                                                                                Parui, S., Samanta, D., & Chakravorty, N. (2022). SEC-EnD: Stacked Ensemble Correlation-based Feature Selection Method for Emotion Detection. Proceedings - 2022 IEEE Silchar Subsection Conference, SILCON 2022. https://doi.org/10.1109/SILCON55242.2022.10028868
                                                                                                                Prasetya Wibawa, A., Aji Kurniawan, S., & Ari Elbaith Zaeni Assistant Professor, I. (2021). Determining Journal Rank by Applying Particle Swarm Optimization-Naive Bayes Classifier. Journal of Information Technology Management, 13(4), 116–125. https://doi.org/10.22059/JITM.2021.305435.2559
                                                                                                                Samizade, R., & Abad, E. M. S. (2018). The Application of Machine Learning Algorithms for Text Mining based on Sentiment Analysis Approach. Journal of Information Technology Management, 10(2), 309–330. https://doi.org/10.22059/JITM.2017.215513.1807
                                                                                                                Singh, S., Pandey, P., Chaudhary, S., Miyapuram, K. P., & Lomas, J. (2022). Towards the development of personalized and generalized interfaces for brain signals across different styles of meditation. ACM International Conference Proceeding Series. https://doi.org/10.1145/3571600.3571656
                                                                                                                Stancin, I., Cifrek, M., & Jovic, A. (2021). A review of eeg signal features and their application in driver drowsiness detection systems. Sensors, 21 (11). MDPI AG. https://doi.org/10.3390/s21113786
                                                                                                                Tee, J. L., Phang, S. K., Chew, W. J., Phang, S. W., & Mun, H. K. (2020). Classification of meditation states through EEG: A method using discrete wavelet transform. AIP Conference Proceedings, 2233. https://doi.org/10.1063/5.0001375
                                                                                                                Wang, H., Jiang, J., Gan, J. Q., & Wang, H. (2023). Motor Imagery EEG Classification Based on a Weighted Multi-branch Structure Suitable for Multisubject Data. IEEE Transactions on Biomedical Engineering. https://doi.org/10.1109/TBME.2023.3274231
                                                                                                                Xiao, P., Qin, Z., Chen, D., Zhang, N., Ding, Y., Deng, F., Qin, Z., & Pang, M. (2023). FastNet: A Lightweight Convolutional Neural Network for Tumors Fast Identification in Mobile-Computer-Assisted Devices. IEEE Internet of Things Journal, 10(11), 9878–9891. https://doi.org/10.1109/JIOT.2023.3235651
                                                                                                                Zamani, F., & Wulansari, R. (2021). Emotion Classification using 1D-CNN and RNN based On DEAP Dataset. 363–378. https://doi.org/10.5121/csit.2021.112328