Abiwinanda, N., Hanif, M., Hesaputra, S.T., Handayani, A., & Mengko, T.R. (2019). Brain tumor classification using convolutional neural network. In: World Congress on Medical Physics and Biomedical Engineering 2018. Springer, (pp. 183–189).
Beyer, M.H. (2007). The GLCM Tutorial Home Page, [Online]. Available: http://www.fp.ucalgary.ca/mhallbey, February, 2007 [Accessed: May 20,2014].
Cheng, J. (2017). Brain tumor dataset. Distributed by Figshare. [Online]. Available: https://figshare.com/articles/brain_tumor_dataset/1512427/5.
Cheng, J., Huang, W., Cao, S., Yang, R., Yang, W., Yun, Z., Wang, Z., &Feng, Q. (2015). Enhanced performance of brain tumor classification via tumor region augmentation and partition. PLoS One 10, e0140381. doi: 10.1371/journal.pone.0140381.
Cheng, J., Yang, W., Huang, M., Huang, W., Jiang, J., Zhou, Y., Yang, R., Zhao, J., Feng, Y., Feng, Q., & Chen, W. (2016). Retrieval of brain tumors by adaptive spatial pooling and Fisher vector representation. PLoS One 11, e0157112. doi:10.1371/journal.pone.0157112.
Chollet, F., & al. (2015). Keras. https ://githu b.com/keras -team/keras
DiPietro, Rob. (2016). A Friendly Introduction to Cross-Entropy Loss. Retrieved from https://rdipietro.github.io/ friendly-intro-to-cross-entropy-loss/.
Haralick, R. M., Shanmugam, K.& al. (1973). Textural features for image classification. IEEE Transactions on Systems, Man, and Cybernetics, (6):610–621.
Javed, U., Riaz, M.M., Ghafoor, A., & Cheema, T.A. (2013). MRI brain classification using texture features, fuzzy weighting and support vector machine. Prog.Electromagn. Res. B 53, 73–88.
Jiang, J., Wu, Y., Huang, M., Yang, W., Chen, W., & Feng, Q. (2013). 3D brain tumor segmentation in multimodal MR images based on learning population-and patient-specific feature sets. Comput.Med. Imaging Graph, 37, 512–521.
John, P. (2012). Brain Tumor Classification Using Wavelet and Texture Based Neural Network. Int J Sci Eng Res, 3: 85–90.
Khan Swati, Z. N., Zhao, Q., Kabir, M., Ali, F., Ali, Z., Ahmed, S., & Lu, J. (2019). Brain tumor classification for MR images using transfer learning and fine-tuning. Computerized Medical Imaging and Graphics, 0895-6111/2019, Elsevier
Krizhevsky, A., Sutskever, I., & Hinton, G.E. (2012). Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems. (pp 1097–1105)
Pan, S.J., & Yang, Q. (2010). A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22, 1345–1359.
Paul, J.S., Plassard, A.J., Landman, B.A., & Fabbri, D. (2017). Deep learning for brain tumor classification. medical imaging 2017: biomedical applications in molecular, structural, and functional imaging. International Society for Optics and Photonics. p.1013710.
Selvaraj, H., Selvi, ST., Selvathi, D., & Gewali, L. (2007). Brain MRI Slices Classification Using Least Squares Support Vector Machine. Int J Intell Comput Med Sci Image Process, 1: 21–33.
Simonyan, K., & Zisserman, K. (2014). Very deep convolutional networks for large-scale image recognition. CoRR, vol. abs/1409.1556.