AdvancedWebRanking. (2019, July). Google Organic CTR History, Fresh CTR averages pulled monthly from millions of keywords. Retrieved May 15, 2019, from https://www.advancedwebranking.com/ctrstudy/
Baeza-Yates, R. (2018). Bias on the Web. Communications of the ACM, 61(6), 54-61.
Busa-Fekete, R., Kégl, B., ÉltetÅ‘, T., & Szarvas, G. (2013). Tune and mix: learning to rank using ensembles of calibrated multi-class classifiers. Machine Learning, 93(2-3), 261–292.
Cen, R., Liu, Y., Zhang, M., Zhou, B., Ru, L., & Ma, S. (2009). Exploring relevance for clicks. The 18th ACM conference on Information and knowledge management (pp. 1847-1850). ACM.
Chapelle, O., & Chang, Y. (2011). Yahoo! Learning to Rank Challenge Overview. The Learning to Rank Challenge, (pp. 1-24).
Darrudi, E., Hashemi, H. B., AleAhmad, A., Zare Bidoki, A., Habibian, A., Mahdikhani, F., & Rahgozar, M. (2009). dotIR collection for Persian web retrieval. University of Tehran. Retrieved May 15, 2019, from http://dbrg.ut.ac.ir/webir/files/Papers/WebIR.pdf
Derhami, V., Khodadadian, E., Ghasemzadeh, M., & Zareh Bidoki, A. (2013). Applying reinforcement learning for web pages ranking algorithms. Applied Soft Computing, 1686–1692.
Derhami, V., Paksima, J., & Khajeh, H. (2019). RRLUFF: Ranking function based on reinforcement learning using user feedback and web document features. AI and Data Mining. Retrieved May 15, 2019, from http://jad.shahroodut.ac.ir/article_1446.html
Dou, Z., Song, R., Yuan, X., & Wen, J.-R. (2008). Are click-through data adequate for learning web search rankings? 17th ACM Conference on Information and Knowledge Management Conference (pp. 73-82). ACM.
Filev, D., & Yager, R. R. (1994). Learning OWA operator weights from data. The Third IEEE Conference on Fuzzy Systems (pp. 468-473). IEEE.
Hashemi, H. B., Yazdani, N., Shakery, A., & Naeini, M. P. (2010). Application of ensemble models in web ranking. The 5th International Symposium on Telecommunications, (pp. 726-731).
Holte, R. C. (1993). Very simple classification rules perform well on most commonly used datasets. Machine Learning, 11, 63-91.
Joachims, T. (2002). Optimizing search engine using clickthrough data. The Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 132-142). ACM.
Keyhanipour, A., Moshiri, B., & Rahgozar, M. (2015). CF-Rank: Learning to rank by classifier fusion on click-through data. Expert Systems with Applications, 42, 8597-8608.
Khodadadian, E., Ghasemzadeh, M., Derhami, V., & Mirsoleimani, A. (2012). A novel ranking algorithm based on reinforcement learning. The 16th CSI International Symposium on Artificial Intelligence and Signal Processing (AISP 2012), (pp. 546-551).
Liu, T.-Y. (2011). Learning to rank for information retrieval. Springer-Verlag.
Macdonald, C., Santos, R. L., & Ounis, I. (2012). On the usefulness of query features for learning to rank. The 21st ACM International Conference on Information and Knowledge Management (pp. 2559-2562). ACM.
Makvana, K., Patel, J., Shah, P., & Thakkar, A. (2018). Comprehensive analysis of personalized web search engines through information retrieval feedback system and user profiling. The International Conference on Advanced Informatics for Computing Research, (pp. 155-164).
Manning, C. D., Raghavan, P., & Schütze, H. (2008). An introduction to information retrieval. Cambridge, England: Cambridge University Press.
Mitchell, T. (1997). Machine Learning. McGraw Hill.
Qin, T., & Liu, T.-Y. (2013). Introducing LETOR 4.0 datasets. arXiv, abs/1306.2597. Retrieved May 15, 2019, from http://arxiv.org/abs/1306.2597
Qin, T., Liu, T.-Y., Xu, J., & Li, H. (2007). LETOR: Benchmark dataset for research on learning to rank for information retrieval. The ACM SIGIR 2007 Workshop on Learning to Rank for Information Retrieval (pp. 3-10). ACM.
W3Techs. (2019, July). Usage of content languages for websites. W3Techs. Retrieved May 15, 2019, from https://w3techs.com/technologies/overview/content_language/all
Yager, R. R. (1988). On ordered weighted averaging aggregation operators in multi-criteria decision making. IEEE Transactions on Systems, Man and Cybernetic, 18, 183-190.