علی مردانی، س.؛ آقایی، ع. (1394). ارائۀ روش نظارتی برای نظرکاوی در زبان فارسی با استفاده از لغتنامه و الگوریتم SVM. مدیریت فناوری اطلاعات، 7(2)، 362- 345.
Ahmed, S. S., Dey, N., Ashour, A. S., Sifaki-Pistolla, D., Bălas-Timar, D., Balas, V. E., & Tavares, J. M. R. (2017). Effect of fuzzy partitioning in Crohn’s disease classification: a neuro-fuzzy-based approach. Medical & biological engineering & computing, 55(1), 101-115.
Alimardani, S., Aghaie, A. (2015). Opinion Mining in Persian Languageusing svm algorithm
Journal of Information Technology Management, 7(2), 345-362. (
in Persian)
Bashir, S., Qamar, U., Khan, F. H., & Naseem, L. (2016). HMV: A medical decision support framework using multi-layer classifiers for disease prediction. Journal of Computational Science, 13, 10-25.
Borut Sluban, A. & NadaLavrač, N. (2015). Relating ensemble diversity and performance: A study in class noise detection. Neurocomputing, 160, 120–131.
Catal, C., Alan, O. & Balkan, K. (2011). Class noise detection based on software metrics and ROC curves. Information Sciences, 181(21), 4867-4877.
Cooper, J.G., Purcell, G.P. (2006). Data Mining for Correlations between Diet and Crohn’s Disease Activity. AMIA Symposium Proceedings, Page – 897.
Guan, D., Yuan, W., & Shen, L. (2013, July). Class noise detection by multiple voting. IEEE. In Natural Computation (ICNC). Ninth International Conference on. pp. 906-911.
Guan, D., Yuan, W., Ma, T., & Lee, S. (2014). Detecting potential labeling errors for bioinformatics by multiple voting. Knowledge-Based Systems, 66, 28-35.
Kaladhar, D. S. V. G. K., Pottumuthu, B. K., Rao, P. V. N., Vadlamudi, V., Chaitanya, A. K., & Reddy, R. H. (1926). The Elements of Statistical Learning in Colon Cancer Datasets: Data Mining, Inference and Prediction. Algorithms Research, 2(1), 8-17.
Mossotto, E., Ashton, J.J., Coelho, T., Beattie, R.M., MacArthur, B.D., Ennis, S. (2017).
Classification of Paediatric Inflammatory Bowel Disease using Machine Learning, 2017 May 25. doi:
10.1038/s41598-017-02606-2.
Olyaee, M. H., Yaghoubi, A., & Yaghoobi, M. (2016). Predicting protein structural classes based on complex networks and recurrence analysis. Journal of Theoretical Biology, 404, 375-382.
Sluban, B., & Lavrač, N. (2015). Relating ensemble diversity and performance: a study in class noise detection. Neurocomputing, 160, 120-131.
Thompson, V. L. S., Lander, S., Xu, S., & Shyu, C. R. (2014). Identifying key variables in African American adherence to colorectal cancer screening: the application of data mining. BMC public health, 14(1), 1173.
Uğuz, H. (2011). Adaptive neuro-fuzzy inference system for diagnosis of the heart valve diseases using wavelet transform with entropy. Neural Computing and Applications, 21 (7), 1617-1628.