آخوندزاده نوقابی، ا.، البدوی، ا.، اقدسی، م. (1393). کاوش پویایی مشتری در طراحی بخشبندی با استفاده از روشهای دادهکاوی. فصلنامۀ مدیریت فناوری اطلاعات، 6 (1)، 30-1.
خدابندهلو، س.، نیکنفس، ع. ا. (1395). ارائۀ روشی جدید برای بخشبندی مشتریان بر اساس میزان وفاداری آنها و تعریف راهبردهایی مناسب برای هر بخش. فصلنامۀ مدیریت فناوری اطلاعات، 8 (1)، 122-101.
عزیزی، ش.، حسینآبادی، و.، بلاغی اینانلو، م. (1393). بخشبندی کاربران بانکداری اینترنتی بر مبنای انتظارات: رویکرد دادهکاوی. فصلنامۀ مدیریت فناوری اطلاعات، 6 (3)، 434- 419.
کریمی علویجه، م. ح.، خدنگی، س.، ترکستانی، م. ص. (1395). روش فرا ابتکاری در یکپارچهسازی مدل بخشبندی بازار مشتریان تلفن همراه تهران با استفاده از شبکههای خودسازمانده و روش میانگین کا. فصلنامۀ مدیریت فناوری اطلاعات، 8 (2)، 372- 351.
Akhundzadeh Noghabi, A., Albadvi, A. & Aghdasi, M. (2014). Mining customer dynamics in designing customer segmentation using data mining techniques. Information Technology Management, 6 (1), 1-30. (in Persian)
Angstenberger, L. (2001). Dynamic Fuzzy Pattern Recognition with Applications to Finance and Engineering (1st ed.). Springer Netherlands.
Azizi, SH., Hosein Abadi, V. & Blaghi, M. (2014). Segmentation of Internet Banking Users Based on Expectations: A Data Mining Approach. Information Technology Management, 6 (3), 419-434. (in Persian)
Bae, S.M., Park, S.C. & Ha, S.H. (2003). Fuzzy Web Ad Selector Based on Web Usage Mining. IEEE Intelligent Systems, 18(6), 62–69.
Bae, S.M., Ha, H. & Park, S.C. (2005). A web-based system for analyzing the voices of call center customers in the service industry. Expert Systems with Applications, 28(1), 29-41.
Baesens, B., Viaene, S., Van Den Poel, D., Vanthienen, J. & Dedene, G. (2002). Bayesian neural network learning for repeat purchase modelling in direct marketing. European Journal of Operational Research, 138(1), 191–211.
Bezdek, J. C., Ehrlich, R., & Full, W. (1984). FCM: The fuzzy c-means clustering algorithm. Computers & Geosciences, 10(2-3), 191–203.
Bose, I. & Chen, X. (2014). Detecting temporal changes in customer behavior. In 2014 International Electrical Engineering Congress (iEECON) (pp. 1–4). IEEE.
Bose, I. & Chen, X. (2015). Detecting the migration of mobile service customers using fuzzy clustering. Information & Management, 52(2), 227–238.
Bray, J.P. (2008). Consumer Behaviour Theory: Approaches and Models. Available in: http://eprints.bournemouth.ac.uk/10107/.
Chen, N., Ribeiro, B., Vieira, A. & Chen, A. (2013). Clustering and visualization of bankruptcy trajectory using self-organizing map. Expert Systems with Applications, 40(1), 385–393.
Cho, Y.H. & Kim, J. K. (2004). Application of Web usage mining and product taxonomy to collaborative recommendations in e-commerce. Expert Systems with Applications, 26(2), 233–246.
Crespo, F. & Weber, R. (2005). A methodology for dynamic data mining based on fuzzy clustering. Fuzzy Sets and Systems, 150(2), 267–284.
De Oliveira, J. V. & Pedrycz, W. (Eds.). (2007). Advances in fuzzy clustering and its applications. John Wiley & Sons.
Dennis, C., Marsland, D. & Cockett, T. (2001). Data Mining for Shopping Centres – Customer Knowledge-Management Framework. Journal of Knowledge Management, 5(4), 368–374.
Denny, Williams, G. J. & Christen, P. (2010). Visualizing temporal cluster changes using Relative Density Self-Organizing Maps. Knowledge and Information Systems, 25(2), 281–302.
Eiter, T. & Mannila, H. (1994). Computing discrete Fréchet distance. AAA: http://www.kr.tuwien.ac.at/staff/eiter/et-archive/cdtr9464.pdf.
Ha, H., Bae, S.M. & Park, S.C. (2002). Customer’s time-variant purchase behavior and corresponding marketing strategies: An online retailer's case. Computers and Industrial Engineering, 43(4), 801–820.
Kim, S.Y, Jung, T.S. & Suh, E. H. & Hwang, H.S. (2006). Customer segmentation and strategy development based on customer lifetime value: A case study. Expert Systems with Applications, 31(1), 101–107.
Karimi, M., Khadangi, S., Torkestani, M. (2016). Ultra Innovative Approach to Integrate Cellphone Customer Market Segmentation Model Using Self Organizing Maps and K-Means Methodology. Information Technology Management, 8 (2), 351-372. (in Persian)
Khodabandelu, S., Niknafs, A. (2016). Proposing a New Method for Customer Segmentation Based on Their Level of Loyalty and Defining Appropriate Strategies for Each Segment. Information Technology Management, 8 (1), 101-122. (in Persian)
Kotler, P. (2000). Marketing Management. Prentice-Hall, Englewood Cliffs, NJ.
Lariviere, B. & Van den Poel, D. (2005). Investigating the post-complaint period by means of survival analysis. Expert Systems with Applications, 29(3), 667-677.
Lee, S. C., Suh, Y. H., Kim, J. K. & Lee, K. J. (2004). A cross-national market segmentation of online game industry using SOM. Expert systems with applications, 27(4), 559-570.
Li, C. & Biswas, G. (2002). Applying the hidden Markov model methodology for unsupervised learning of temporal data. International Journal of Knowledge Based Intelligent Engineering Systems, 6(3), 152-160.
Minke, A., Ambrosi, K. & Hahne, F. (2009). Approach for dynamic problems in clustering. Information Technologies in Environmental Engineering, 373-386.
Prinzie, A. & Van den Poel, D. (2006). Investigating purchasing-sequence patterns for financial services using Markov, MTD and MTDg models. European Journal of Operational Research, 170(3), 710-734.
Sarlin, P. (2013). Self-organizing time map: An abstraction of temporal multivariate patterns. Neurocomputing, 99, 496-508.
Seret, A., Vanden Broucke, S. K., Baesens, B. & Vanthienen, J. (2013, August). An Exploratory Approach for Understanding Customer Behavior Processes Based on Clustering and Sequence Mining. In International Conference on Business Process Management (pp. 237-248). Springer, Cham.
Verdú, S. V., Garcia, M. O., Senabre, C., Marín, A. G. & Franco, F. G. (2006). Classification, filtering, and identification of electrical customer load patterns through the use of self-organizing maps. IEEE Transactions on Power Systems, 21(4), 1672-1682.
Wei, C. P. & Chiu, I. T. (2002). Turning telecommunications call details to churn prediction: a data mining approach. Expert systems with applications, 23(2), 103-112.
Wu, C. H., Kao, S. C., Su, Y. Y. & Wu, C. C. (2005). Targeting customers via discovery knowledge for the insurance industry. Expert Systems with Applications, 29(2), 291-299.
Yang, Y. & Padmanabhan, B. (2005). GHIC: A hierarchical pattern-based clustering algorithm for grouping Web transactions. IEEE Transactions on Knowledge and Data Engineering, 17(9), 1300-1304.
Yang, Q. & Wu, X. (2006). 10 challenging problems in data mining research. International Journal of Information Technology & Decision Making, 5(04), 597-604.
Yao, Z. (2013). Visual Customer Segmentation and Behavior Analysis A SOM-Based Approach. (Doctoral Dissertation). Turku Centre for Computer Science, Finland.
Ye, L., Qiuru, C., Haixu, X., Yijun, L. & Guangping, Z. (2013). Customer segmentation for telecom with the k-means clustering method. Information Technology Journal, 12(3), 409-413.
Zhu, T., Wang, B., Wu, B. & Zhu, C. (2011). Role defining using behavior-based clustering in telecommunication network. Expert Systems with Applications, 38(4), 3902-3908.