Albadvi, A., Chaharsooghi, S. K., & Esfahanipour, A. (2007). Decision making in stock trading: An application of PROMETHEE. European Journal of Operational Research, 177(2): 673-683.
Alter, S. (2004). A work system view of DSS in its fourth decade. Decision Support Systems, 38(3): 319-327.
Barns, J.P. (1982). Lingenierie de la decision. Elaboration dinstruments daide a la decision. Method PROMETHEE. In: Nadeau, R., Landry, M. (Eds.), Laide a la Decision: Nature, Instruments et Perspectives Davenir. Presses de Universite Laval, Quebec, Canada, 183–214.
Barros, C. P., Ferreira, C., & Williams, J. (2007). Analysing the determinants of performance of best and worst European banks: A mixed logit approach. Journal of Banking & Finance, 31(7): 2189-2203.
Beheshtinia, M.A. & Farazmand, N. (2015). A novel decision support system for discrete cost-CO2 emission trade-off in construction projects: the usage of Imitate Genetic Algorithm.
Journal of information technology management, 7(1): 23-48. (
in Persian)
Behzadian, M., Kazemzadeh, R. B., Albadvi, A., & Aghdasi, M. (2010). PROMETHEE: A comprehensive literature review on methodologies and applications. European journal of Operational research, 200(1): 198-215.
Beynon, M. J. & Wells, P. (2008). The lean improvement of the chemical emissions of motor vehicles based on preference ranking: A PROMETHEE uncertainty analysis. Omega, 36(3): 384-394.
Brans, J. P. & Vincke, P. (1985). Note-A Preference Ranking Organisation Method: (The PROMETHEE Method for Multiple Criteria Decision-Making).Management science, 31(6): 647-656.
Dempster, M. A. H., & Ireland, A. M. (1991). Object-oriented model integration in a financial decision support system. Decision Support Systems, 7(4): 329-340.
Doumpos, M. & Zopounidis, C. (2010). A multicriteria decision support system for bank rating. Decision Support Systems, 50(1): 55-63.
García, F., Guijarro, F., & Moya, I. (2010). Ranking Spanish savings banks: A multicriteria approach. Mathematical and computer modelling, 52(7): 1058-1065.
Ho, C. T. (2006). Measuring bank operations performance: an approach based on Grey Relation Analysis. Journal of the Operational Research Society, 57(4): 337-349.
J
ebelameli, F. & Rasoulinejad, E. (2010). Using network analysis process model in the ranking of the branches of the bank: A Case Study of Bank Saderat.
Journal of Research and Economic Policy, 55(1): 107-124. (
in Persian)
Kosmidou, K. & Zopounidis, C. (2008). Measurement of bank performance in Greece. South- Eastern Europe Journal of Economics, 6(1):79–95.
Kumar, S. & Arora, S. (1995). A model for risk classification of banks. Managerial and Decision Economics, 16(2): 155-165.
Lin, S. W., Shiue, Y. R., Chen, S. C. & Cheng, H. M. (2009). Applying enhanced data mining approaches in predicting bank performance: A case of Taiwanese commercial banks. Expert Systems with Applications, 36(9): 11543-11551.
Manandhar, R. & Tang, J.C.S. (2002). The Evaluation of Bank Branch Performance Using Data Envelopment Analysis: A Framework. The Journal of High Technology Management Research, 13(1): 1-17.
Mareschal, B. & Brans, J. P. (1991). Bank Adviser: An industrial evaluation system. European Journal of Operational Research, 54(3): 318-324.
Mareschal, B. & Mertens, D. (1992). BANKS a Multicriteria, PROMETHEE-based, Decision Support System for the Evaluation of the International Banking Sector. Journal of Decision Systems, 1(2-3): 175-189.
Min, D. M., Kim, J. R., Kim, W. C., Min, D. & Ku, S. (1996). IBRS: Intelligent bank reengineering system. Decision Support Systems, 18(1): 97-105.
Morais, D.C. & de Almeida, A.T. (2006). Group decision model to manage water losses. Pesquisa Operational, 26 (3): 567–584.
Moynihan, G. P., Purushothaman, P., McLeod, R. W. & Nichols, W. G. (2002). DSSALM: a decision support system for asset and liability management. Decision Support Systems, 33(1), 23-38.
Neely, M. & Ken, P. (1995). Performance measurement system design: A literature review and research agenda. International Journal of Operations & Production Management, 15 (4): 80 – 116.
Nunnally, J. C., Bernstein, I. H., & Berge, J. M. T. (1967). Psychometric theory (Vol. 226). New York: McGraw-Hill.
Purcell, D. E., O'Shea, M. G. & Kokot, S. (2007). Role of chemometrics for at-field application of NIR spectroscopy to predict sugarcane clonal performance. Chemometrics and Intelligent Laboratory Systems, 87(1): 113-124.
Ravi, V., Kurniawan, H., Thai, P. N. K., & Kumar, P. R. (2008). Soft computing system for bank performance prediction. Applied soft computing, 8(1), 305-315.
Saremi, M. & Molaee, H. (2003). A model for performance evaluation and rating of the bank branches in the bank of refahe kargaran.
Management Culture, 1(4): 31-58. (
in Persian)
Seçme, N. Y., Bayrakdaroğlu, A. & Kahraman, C. (2009). Fuzzy performance evaluation in Turkish banking sector using analytic hierarchy process and TOPSIS. Expert Systems with Applications, 36(9): 11699-11709.
Spathis, C., Kosmidou, K., & Doumpos, M. (2002). Assessing profitability factors in the Greek banking system: A multicriteria methodology. International Transactions in operational research, 9(5): 517-530.
Stewart, R. A., & Mohamed, S. (2001). Utilizing the balanced scorecard for IT/IS performance evaluation in construction. Construction innovation,1(3): 147-163.
Taghavifard, M.T. & Pooti, N. (2013). Design and Development of Decision Support System for Ranking Rapid Prototyping Techniques and Selecting the Best Technique in Automobile Industry.
Journal of information technology management, 5(2):1-22. (
in Persian)
Wu, H. Y., Tzeng, G. H., & Chen, Y. H. (2009). A fuzzy MCDM approach for evaluating banking performance based on Balanced Scorecard. Expert Systems with Applications, 36(6): 10135-10147.
Zhu, Z., Xu, L., Chen, G., & Li, Y. (2010). Optimization on tribological properties of aramid fibre and CaSO 4 whisker reinforced non-metallic friction material with analytic hierarchy process and preference ranking organization method for enrichment evaluations. Materials & Design, 31(1): 551-555.