

Topic Modeling Blockchain in Accounting and Audit Research

Ali Ebrahimi Kordlar *

*Corresponding author, Associate Prof., Department of Accounting, Faculty of Accounting and Financial Sciences, College of Management, University of Tehran, Tehran, Iran. E-mail: aebrahimi@ut.ac.ir

Mahdi Safaei

Ph.D. Candidate, Department of Accounting, Faculty of Accounting and Financial Sciences, College of Management, University of Tehran, Tehran, Iran. E-mail: safaei.mahdi@ut.ac.ir

Journal of Information Technology Management, 2025, Vol. 17, Issue 4, pp. 59-87

Published by the University of Tehran, College of Management

doi: <https://doi.org/10.22059/jitm.2025.399268.4215>

Article Type: Research Paper

© Authors

Received: June 11, 2025

Received in revised form: August 24, 2025

Accepted: September 16, 2025

Published online: November 01, 2025

Abstract

This article examines blockchain research in accounting, auditing, and corporate governance (AAG), a field that has experienced rapid growth but remains fragmented. Using Latent Dirichlet Allocation (LDA) topic modeling, the study analyzes 486 Scopus-indexed abstracts published between 2017 and 2025 to uncover key themes and research trends. The analysis identifies eleven thematic clusters: Blockchain Research Landscape & Governance, Financial Reporting & Digital Security, Blockchain Applications in Diverse Domains, Auditing Practices & Taxation, Bitcoin & Emerging Digital Financial Tools, Corporate Governance & Compliance, Smart Contracts & Crypto Audits, Digital Transformation in Finance, ESG & Corporate Strategy, Supply Chain Transparency, and Adoption of Audit Technologies by Firms. A strategic thematic map further classifies these into motor, basic, niche, and emerging themes, providing the first data-driven overview of blockchain research in AAG. The results highlight well-developed areas such as supply chain transparency, alongside blind spots in standard-setting, assurance of smart contracts, and ESG integration. The study advances understanding by offering a structured framework that supports future research, regulatory development, and professional practice.

Keywords: Topic Modeling, Blockchain; Accounting, Auditing, Corporate Governance, Latent Dirichlet Allocation (LDA)

Introduction

Blockchain technology, a distributed ledger system built on cryptographic security and consensus-based validation, is a significant innovation with far-reaching implications across industries (Swan, 2015; Iansiti & Lakhani, 2017). In the fields of accounting, auditing, and corporate governance (AAG)—professions grounded in trust, verification, and accountability—blockchain is viewed as a disruptive force, not merely an incremental improvement (Dai & Vasarhelyi, 2017). Its core features of decentralization, immutability, and transparency offer compelling solutions to persistent challenges and may fundamentally reshape professional standards and stakeholder engagement (Pflueger et al., 2024).

In accounting, blockchain enables unprecedented data integrity (Putritama et al., 2024) and new models like “triple-entry accounting” (Grigg, 2005; Cai, 2019). Smart contracts, which embed executable business logic, can automate processes and facilitate real-time financial reporting (Christidis & Devetsikiotis, 2016). For auditing, the technology introduces the potential for continuous auditing and novel evidence collection methods (Alles, 2015). However, it also creates new assurance challenges related to smart contracts and decentralized organizations (Rozario & Thomas, 2019). In corporate governance, blockchain can enhance transparency and support emerging structures such as Decentralized Autonomous Organizations (DAOs) (Kaal, 2020). These applications collectively point toward a more efficient, transparent, and trustworthy AAG ecosystem.

Reflecting its growing practical importance, academic research at the intersection of blockchain and AAG has expanded rapidly in both volume and scope (Indrayani et al., 2024; Secinaro et al., 2021). While existing literature reviews and bibliometric analyses provide a valuable foundation (Pimentel & Boulian, 2020; Han et al., 2023), the field's rapid growth has led to intellectual fragmentation. Thematic diversity now spans new areas like ESG reporting (Asif et al., 2023), tax compliance (Chouaibi et al., 2024), and AIS integration (Widayanti et al., 2024), making it difficult to discern the field's core themes, emerging frontiers, and intellectual structure (Marrone & Hazelton, 2019).

This fragmentation reveals a critical research gap: the need for a systematic, data-driven map of the intellectual landscape. To address this, our study employs Latent Dirichlet Allocation (LDA) (Blei et al., 2003), a computational topic modeling technique, to analyze a corpus of 486 academic abstracts. The analysis produces a data-driven "thematic map" of blockchain research in AAG. This contribution is valuable for positioning future research, identifying underexplored topics, and providing practitioners and educators with a structured overview of the field's key focus areas and intellectual architecture.

Literature Review

Research on blockchain's integration into accounting, auditing, and corporate governance (AAG) is expanding rapidly, encompassing diverse themes and revealing both opportunities and challenges. Foundational studies emphasize how blockchain's core attributes—immutability, transparency, and decentralization—can reshape accounting paradigms and Accounting Information Systems (AIS). A central example is Triple-Entry Accounting (TEA), which employs a shared, cryptographically secured ledger to enhance trust, data integrity, and real-time information access (Cai, 2019; Grigg, 2005; Nofel et al., 2024). Yet, practical hurdles persist, most notably the “first-mile problem”—ensuring that off-chain events are accurately recorded on-chain, which is critical for AIS integrity (Alles & Gray, 2023).

The audit profession is another focal point of transformation. Research highlights how smart contracts can automate audit processes and enable continuous auditing (Alles, 2015; Guo et al., 2025), while blockchain itself may strengthen the reliability of audit evidence. However, the technology also introduces new audit risks, particularly those associated with client blockchain adoption (Elmaasrawy et al., 2025), underscoring the need for updated auditor competencies and greater technology acceptance (Juma'h & Li, 2023).

Blockchain's influence extends to financial reporting. Studies highlight its potential to enhance reporting quality (Liao et al., 2025), although some caution is raised about potential unintended consequences, such as shifts in earnings management practices (Autore et al., 2024). The accounting treatment of crypto-assets remains contested, with growing calls for new standards to resolve inconsistencies across frameworks (Jackson & Luu, 2023). In parallel, blockchain applications are increasingly studied in Environmental, Social, and Governance (ESG) reporting and tax compliance, where the technology can enhance transparency, validation, and trust (Yu, 2024; Fatz et al., 2020).

In corporate governance, blockchain is widely recognized for its capacity to strengthen transparency, reduce agency costs, and improve governance quality (Singh et al., 2020; Kaal, 2020). The emergence of Decentralized Autonomous Organizations (DAOs) introduces a novel governance model, though studies critically assess both its opportunities and risks (Bellavitis et al., 2023). Beyond AAG, blockchain applications extend to supply chain traceability (Kleinknecht, 2021), healthcare data management (Kordestani et al., 2020), and convergence with AI, IoT, and big data—technologies considered central to broader digital transformation (Meiryani et al., 2023).

This evolving body of work reveals a vibrant yet fragmented research landscape. Optimism regarding blockchain's potential for transparency, security, and efficiency is tempered by challenges related to implementation complexity, emerging risks, the lack of standardized frameworks, and persistent skill gaps. The breadth and diversity of this

interdisciplinary research (Hakami et al., 2024; Indrayani et al., 2024) underscore the urgent need for systematic, data-driven mapping. While existing reviews provide valuable insights, many rely on qualitative synthesis or narrowly defined sub-domains, leaving the field's comprehensive thematic architecture underexplored. This study addresses that gap by employing topic modeling to construct a structured overview of blockchain research in AAG, offering clarity, organization, and a foundation for advancing coherent future scholarship.

Methodology

This study employs Latent Dirichlet Allocation (LDA) (Blei et al., 2003), a generative probabilistic model for discovering latent thematic structures within large text corpora. We use this statistical technique to map the intellectual landscape of blockchain research in Accounting, Auditing, and Governance (AAG). The LDA model assumes that each document is a mixture of topics and each topic is a probability distribution over a vocabulary of words. This approach enables a quantitative and reproducible analysis of thematic patterns in the literature.

1. Corpus Compilation and Preprocessing

The corpus was compiled from the Scopus database, targeting English-language, peer-reviewed articles and conference papers published between January 2017 and May 2025. Search criteria (detailed in Table 1) focused on business, management, and accounting, using keywords related to blockchain and AAG. An initial search yielded 507 publications; after deduplication, the final dataset comprised 486 unique abstracts.

A rigorous preprocessing pipeline was implemented in Python to prepare the text for modeling. First, texts were tokenized into lowercase words, and punctuation and short tokens (<3 characters) were removed. Next, a two-tier stop word removal process was applied: (i) common English stop words were filtered using the NLTK library, and (ii) a custom list of domain-general academic terms (e.g., research, study, paper, findings) was excluded to reduce noise and enhance topic specificity. Finally, to minimize the influence of rare or overly frequent words, tokens appearing in fewer than five documents or in more than 50% of the corpus were excluded. The remaining tokens were used to construct a document-term matrix (DTM), which served as the direct input for the LDA model.

2. LDA Model Training and Validation

LDA models were trained using the Gensim LdaMulticore implementation. A critical parameter is the number of topics (k). To determine the optimal k empirically, we trained models with k ranging from 2 to 20. Each configuration was executed five times using different random seeds to ensure the stability and robustness of the results.

Model selection was guided by two metrics. The primary criterion was the C_v coherence score (Röder et al., 2015), which measures the semantic interpretability of topics and correlates strongly with human judgment. We also computed perplexity, a measure of model fit, though it is known to favor a larger number of topics. As shown in Figure 1, which reports the average C_v coherence values with error bars indicating variability across seeds, a model with $k = 11$ achieved the optimal balance of high semantic coherence and statistical robustness. Furthermore, an examination of the topic prevalence distribution confirmed that this 11-topic solution produced distinct, interpretable themes with balanced coverage across the corpus.

3. Topic Interpretation and Reliability

To ensure interpretive reliability, two authors independently analyzed the top 20 keywords for each of the 11 topics and reviewed the abstracts most strongly associated with each. Based on this inductive analysis, preliminary labels were assigned. Discrepancies were reconciled through discussion, and inter-coder agreement for the final labels was quantified using Cohen's Kappa, indicating substantial agreement. This iterative process, supported by visualizations from the pyLDAvis library (Sievert & Shirley, 2014) to explore inter-topic distances, ensured the consistency and validity of the final thematic framework.

4. Data Handling and Reproducibility

Each abstract was assigned a dominant topic based on its highest posterior probability. For transparency and reproducibility, the full dataset, including topic distributions per document, was exported to a CSV file. The entire analytical pipeline was implemented in Python using Gensim, NLTK, and pyLDAvis, with all steps parameterized to ensure the study is replicable.

Results

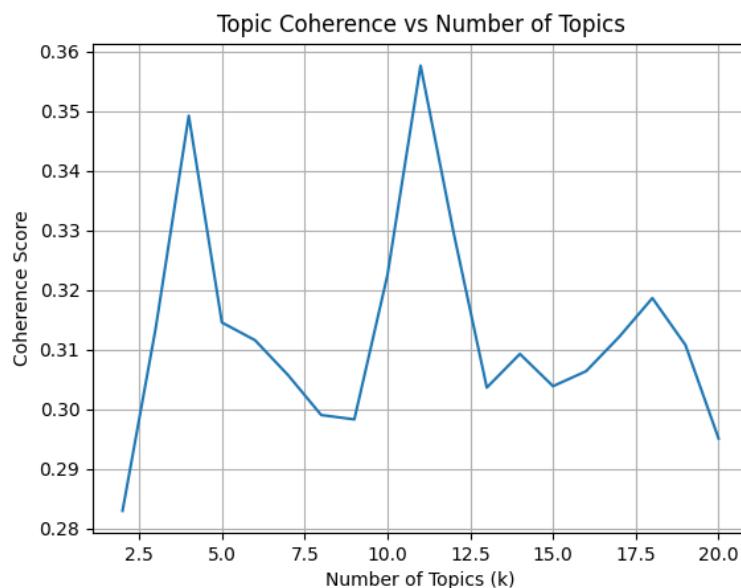

The application of Latent Dirichlet Allocation (LDA) to the 486 unique academic abstracts, spanning 2017 to May 2025, yielded a structured overview of the research landscape at the intersection of blockchain technology with accounting, auditing, and governance. The Scopus database search (see Table 1 for detailed search criteria) initially retrieved 507 articles; after deduplication, 486 unique abstracts formed the final corpus for analysis. These publications amassed a total of 11,196 citations during the review period, with an average of 23.18 citations per article.

Table 1. Search Criteria

Search Terms	<u>Blockchain search terms:</u> "blockchain" OR "distributed ledger technology" OR "DLT" OR "smart contract" <u>Accounting search terms:</u> "Accounting" OR "Audit" OR "Audit Reporting" OR "financial reporting" OR "Management Reporting" OR "Accounting Information Systems" OR "Accountant" OR "Auditor" OR "Corporate Governance" OR "financial reporting"
Data Range	January 2017 to May 2025
Publication Type	Articles and conference papers
Source Type	Journals and conference proceedings
Language	English
Subjects	business, management, and accounting

Optimal Topic Identification

To determine the optimal number of thematic clusters, LDA models were trained for a range of topics ($k=2$ to 20). The C_v coherence score was used to evaluate these models, as it captures the semantic similarity of top words within a topic, indicating internal consistency and interpretability. As illustrated in Figure 1, a model with eleven topics ($k=11$) was identified as offering the best trade-off between coherence and human interpretability (Röder et al., 2015).

Figure 1. Coherence Score for Number of Topics (k) ranging from 2 to 20

Overview of Identified Thematic Clusters

The LDA analysis with $k=11$ topics identified distinct thematic clusters. Table 2 provides an overview of these eleven topics, including their assigned labels, top representative keywords, the number of publications associated with each, and the distribution between article and conference paper types. Sample articles, highly representative of each topic, are also provided

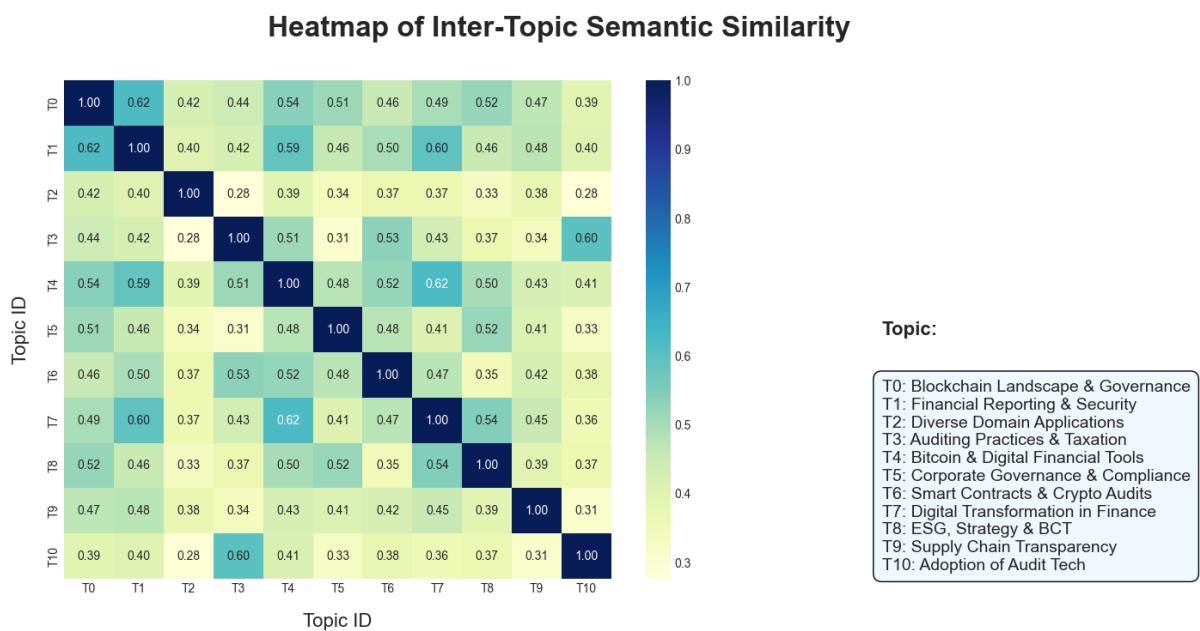

to illustrate the thematic content. The subsequent section will provide a more detailed qualitative description of each identified topic.

Table 2. Results Overview of Topic Modeling

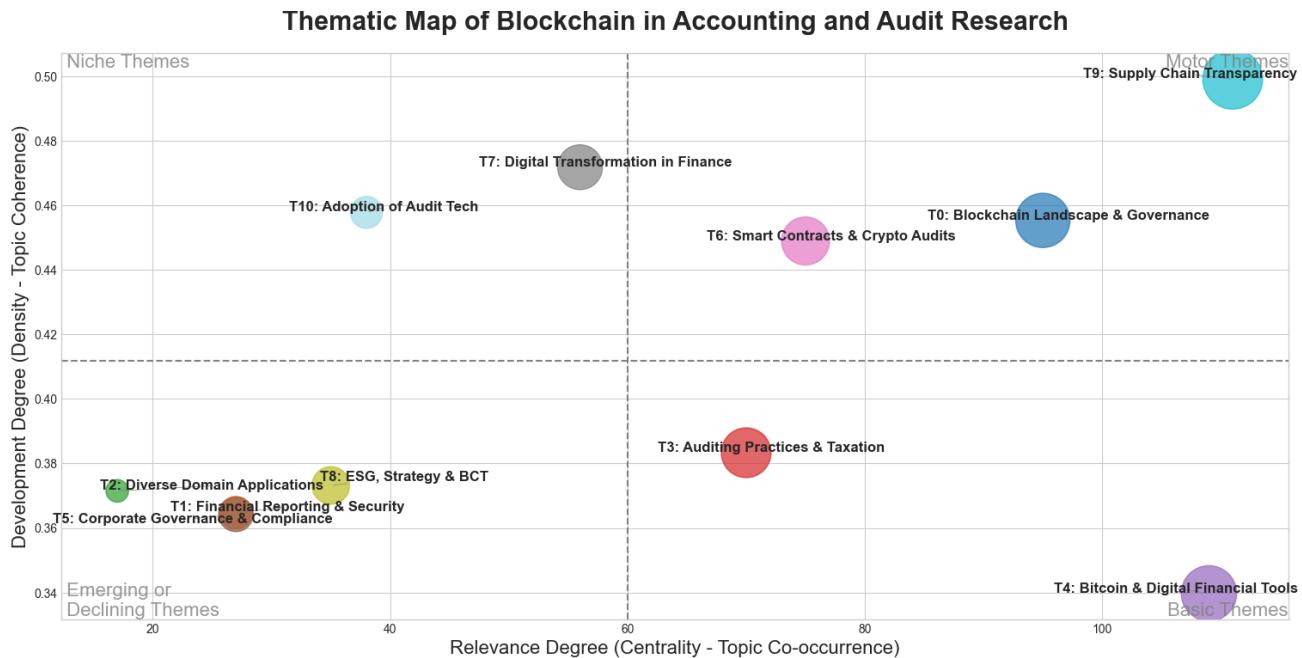
Topic	Label	Topic Keyword	Number of Publications	Publications Type	Sample Article
0	Blockchain Research Landscape & Governance	literature, potential, review, technologies, future, governance, systems, accountability, information, corporate	64	Article: 53 Conference Paper: 11	Al-Abdullah et al. (2020) 99.56 % Werner (2023) 98.79 %
1	Financial Reporting & Digital Security	financial, public, reporting, management, technologies, security, auditing, framework, digital, systems	25	Article: 23 Conference Paper: 2	Nofel et al. (2024) 99.32 % Dubey & Goyal (2024) 99.08 %
2	Blockchain Applications in Diverse Domains	waste, management, transactions, learning, metaverse, food, students, entry, blockchains, safety	12	Article: 11 Conference Paper: 1	An & Mikhaylov (2023) 99.35 % Youn et al. (2025) 99.24 %
3	Auditing Practices & Taxation	audit, auditing, auditors, information, tax, value, intention, design, adoption, model	54	Article: 51 Conference Paper: 3	Dyball & Seethamraju (2022) 99.24 % Gauthier & Brender (2021) 99.14 %
4	Bitcoin & Emerging Digital Financial Tools	technologies, digital, bitcoin, financial, audit, reserved, rights, emerging, transformation, transactions	67	Article: 60 Conference Paper: 7	Caprolu et al. (2021) 99.13 % Grigoreva et al. (2019) 99.19 %
5	Corporate Governance & Compliance	governance, business, corporate, energy, rights, compliance, intelligence, artificial, real, smart	28	Article: 23 Conference Paper: 5	Agostini (2024) 99.23 % Sabour & Al-Waeli (2023) 99.22 %
6	Smart Contracts & Crypto Audits	audit, financial, smart, contracts, reporting, transactions, crypto, rights, tokens, ledger	54	Article: 38 Conference Paper: 16	Guan & Zhang (2020) 99.1 % Felipe Munoz et al. (2021) 99.14 %
7	Digital Transformation in Finance	digital, financial, information, technologies, system, enterprises, reporting, quality, market, economic	42	Article: 36 Conference Paper: 6	Kliestik et al. (2024) 99.62 % Tran et al. (2024) 99.33 %
8	ESG, Corporate Strategy & BCT	governance, digital, corporate, bct, esg, transformation, management, firms, sharing, risk	31	Article: 26 Conference Paper: 5	Basu et al. (2024) 99.47 % Chinedu & Awasthi (2019) 99.47 %
9	Supply Chain Transparency	supply, chain, management, system, systems, information, business, transparency, framework, carbon	82	Article: 50 Conference Paper: 32	Ashraf & Kader (2019) 99.26 % Choudhury et al. (2023) 99.25 %
10	Adoption of Audit Tech by Firms	adoption, auditors, firms, audit, business, factors, adopt, trust, quality, firm	24	Article: 21 Conference Paper: 3	Marzuki et al. (2019) 99.42 % Marrone & Hazelton (2019) 99.37 %

Thematic Structure and Inter-Topic Relationships

The analysis reveals that the eleven topics are not isolated but form a cohesive intellectual structure. Figure 2 presents a heatmap of the inter-topic semantic similarity, providing quantitative evidence of the conceptual relationships between themes. The heatmap shows distinct clusters of related topics; for instance, a strong semantic similarity (0.60) exists between ‘Auditing Practices & Taxation’ (T3) and ‘Adoption of Audit Tech by Firms’ (T10), highlighting the intrinsic link between the evolution of audit methodologies and the organizational challenges of their implementation. This interconnectedness justifies the higher-level strategic analysis that follows.

Figure 2. Heatmap of Inter-Topic Semantic Similarity

A Strategic Map of the Research Landscape


To move beyond a simple list of topics and provide a conceptual model of the field, we developed a strategic thematic map, shown in Figure 3. This map visualizes each topic’s role based on two key statistical dimensions: Relevance Degree (Centrality), which measures a topic’s importance and interaction within the research network, and Development Degree (Density), which reflects its internal coherence and maturity. This data-driven approach categorizes the eleven topics into four distinct strategic quadrants:

Motor Themes (Top-Right): Well-developed and highly central topics that are currently driving the research field.

Basic Themes (Bottom-Right): Foundational topics that are highly central but less developed, serving as essential building blocks for other themes.

Niche Themes (Top-Left): Highly developed but specialized topics with lower centrality, representing mature but contained areas of research.

Emerging Themes (Bottom-Left): Topics with low development and centrality, representing nascent areas of inquiry or future research frontiers.

Figure 3. Thematic Map of Blockchain in Accounting and Audit Research

Analysis of Thematic Clusters by Strategic Role

This section presents a detailed qualitative analysis of the eleven thematic clusters identified in the strategic map (Figure 3). Each topic is examined in terms of its core focus, key findings from the literature, and broader implications for the accounting, auditing, and governance (AAG) field. The discussion is structured according to the four strategic quadrants: Motor Themes, Basic Themes, Niche Themes, and Emerging Themes

Motor Themes

Topic 9: Enhancing Supply Chain Transparency, Security, and Sustainability

This motor theme investigates blockchain applications for improving transparency, traceability, and security across supply chains. Traditional supply chains are often opaque, positioning blockchain as a transformative solution through its decentralized and immutable ledger (Wang & Kogan, 2018; Al-Htaybat et al., 2019; Gaur, 2020; Rijanto, 2021). Research highlights its ability to establish robust traceability systems across sectors, including manufacturing and agriculture (Ashraf & Kader, 2019; Dasaklis et al., 2019; Felipe Munoz et al., 2021; Tan, Huang, & Li, 2023).

By tokenizing assets, blockchain generates immutable audit trails that prevent counterfeiting and verify compliance with sustainability and ethical sourcing standards (Kshetri, 2021; Christ & Helliar, 2021; McGrath et al., 2021). The integration of smart contracts further enables automation (Chinedu & Awasthi, 2019; Lopez-Pimentel, Rojas, & Monroy, 2020), while permissioned blockchains address data privacy concerns (Sahai et al., 2020; Hill et al., 2021; Bergers et al., 2021). This theme also extends to improvements in supply chain finance (Zheng et al., 2022) and the credibility of ESG disclosures (Bakarich et al., 2020; Tian & Sarkis, 2024), with applications in managing carbon credits and e-waste (Basu et al., 2024; Luo et al., 2024; Seidenfad et al., 2023). Its prominence reflects the practical integration of blockchain into real-world operational contexts.

Topic 0: Blockchain Research Landscape & Governance

As a foundational motor theme, this topic represents scholarly engagement with blockchain's transformative potential for AAG. It investigates blockchain's capacity to create real-time, verifiable, and transparent accounting ecosystems, fundamentally reshaping traditional record-keeping (Dai & Vasarhelyi, 2017; Cai, 2021). Extensive literature reviews and bibliometric analyses map intellectual territory and track emerging streams (Marrone & Hazelton, 2019; Pimentel & Boulian, 2020; Secinaro et al., 2021).

Governance is a central sub-theme, including the rise of Decentralized Autonomous Organizations (DAOs) (Kaal, 2020; Bellavitis et al., 2023) and the reconfiguration of traditional governance through blockchain's ability to enhance accountability and trust (Mutamimah et al., 2023; Trequattrini et al., 2024). This theme functions as the intellectual anchor of the field, assessing adoption (Kokina et al., 2017), applications beyond cryptocurrency (Stafford & Treiblmaier, 2020), and intersections with AI, education, and regulatory challenges (Han et al., 2023; Desplebin et al., 2024; Putritama et al., 2024).

Topic 6: Smart Contracts, Crypto-Asset Auditing, and the Transformation of Financial Systems

This technical motor theme focuses on the impact of smart contracts on auditing and financial systems. Research emphasizes how smart contracts can automate audit procedures, enable continuous assurance, and contribute to the "Audit 4.0" paradigm that integrates technologies such as IoT (Rozario & Vasarhelyi, 2018; Rozario & Thomas, 2019; Dai et al., 2019; Guo et al., 2025; Appelbaum & Nehmer, 2020; Zemánková, 2019).

Challenges include the complexities of auditing crypto-assets (Hsieh & Brennan, 2022; Appelbaum et al., 2022) and addressing the "oracle problem," concerning the reliability of external data inputs (Sheldon, 2021a). The development of new audit frameworks (Sheldon, 2019) and voluntary disclosure practices for crypto-assets (Juma'h & Albizri, 2025) positions this theme at the technical frontier of assurance. Its implications extend to auditing

decentralized finance (DeFi) platforms (Bourveau et al., 2024) and using DLT to streamline ESG reporting (Cerchiaro et al., 2025).

Basic Themes

Topic 3: Evolution of Auditing Practices, Risk Assessment, and Taxation

This basic theme investigates blockchain's impact on auditing and taxation. Studies highlight the re-engineering of audit processes through smart contracts to enable near real-time reporting (Rozario & Vasarhelyi, 2018; Rozario & Thomas, 2019) and to enhance evidence collection (Vincent et al., 2020). Open-access data introduces both opportunities and risks for auditors (O'Leary, 2018).

Research identifies adoption drivers such as performance expectations and organizational readiness (Ferri et al., 2020; Juma'h & Li, 2023; Alkhwaldi et al., 2024; Jena, 2024; Salim et al., 2022; Chowdhury et al., 2023), alongside evolving auditor roles in blockchain-based environments (Schmitz & Leoni, 2019; Elommal & Manita, 2022). This theme further explores emerging audit risks (Dyball & Seethamraju, 2021, 2022; Huang et al., 2024; Elmaasrawy et al., 2025), the adequacy of existing standards (Gauthier & Brender, 2021), and taxation implications (Gomaa et al., 2019; Søgaard, 2021; Lee et al., 2024; Chouaibi et al., 2024).

Topic 4: Bitcoin & Emerging Digital Financial Tools

This basic theme focuses on the disruptive impact of cryptocurrencies on financial accounting, reporting, and auditing. Literature highlights the need to re-evaluate traditional financial paradigms (Dimbean-Creta, 2017; Moll & Yigitbasioglu, 2019). Challenges include inconsistencies in accounting treatment under IFRS and US GAAP, with calls for clear, standardized guidance (Procházka, 2018; Smith et al., 2019; Alsalmi et al., 2023; Jackson & Luu, 2023; Luo & Yu, 2024).

The theme also explores broader implications such as enhancing information quality, reducing fraud, and mitigating information asymmetry (Yu et al., 2018; Bonyuet, 2020; Rivera & Foderick, 2024; Oosthoek & Doerr, 2020; Gray, 2024). A recurring sub-theme is the adaptation of accounting education to include blockchain, data analytics, and AI (Qasim & Kharbat, 2020; Aldredge et al., 2021; Kennedy & Stratopoulos, 2025).

Niche Themes

Topic 7: Digital Transformation in Finance

This niche theme analyzes the systemic impact of digital transformation, where blockchain interacts with AI, Big Data, and IoT. Research emphasizes improvements in efficiency, security, and modernization of accounting practices within the “Accounting 4.0” paradigm

(Albekov et al., 2017; Chyzhevska et al., 2021; Kliestik et al., 2024; Shapovalova et al., 2023; Petchenko et al., 2023).

Applications include RegTech and SupTech (Kavassalis et al., 2018; Brammertz & Mendelowitz, 2018) and innovations in AIS that enable triple-entry accounting (ALSaqa et al., 2019; Kwilinski, 2019; Alkafaji, Dashtbayaz, & Salehi, 2023), despite barriers such as security risks and required investments (Asonitou, 2020; Amanova et al., 2023). This theme also considers digital transformation's role in mitigating fraud (Abu-Dabaseh et al., 2025).

Topic 10: Adoption, Impact, and Challenges of Blockchain in Accounting Firms

This niche theme explores organizational adoption of blockchain, emphasizing the gap between perceived potential and practical implementation (Bennett et al., 2020; Akter et al., 2024; Oladejo et al., 2024). Adoption drivers include perceived usefulness and readiness (Jaradat et al., 2024; Salim et al., 2022), while barriers encompass costs, ease of use, and technostress (Moghrabi & Benamer, 2022; Abu Afifa et al., 2023; Alkhwaldi et al., 2024; Jena, 2024; Alshurafat et al., 2023; Majeed & Taha, 2024).

Findings on firm performance are mixed, highlighting the influence of contextual factors (Sharma et al., 2023; Fang et al., 2023; Autore et al., 2024). A recurring theme is the call to adapt accounting curricula to address the blockchain knowledge gap (Stern & Reinstein, 2021; Angeline et al., 2021; Hamadeh, Nouraldeen, Mahboub, & Hashem, 2025).

Emerging Themes

Topic 1: Financial Reporting & Digital Security

This emerging theme examines blockchain's intersection with financial reporting integrity and cybersecurity. It addresses data security across blockchain architectures (O'Leary, 2017), proposals to strengthen integrity (Cap & Leiding, 2018; White & Daniels, 2019), and tensions between decentralization and GDPR compliance (Al-Abdullah et al., 2020).

It also considers reporting inconsistencies for crypto-assets (Parrondo, 2023; Luo & Yu, 2024; Pimentel et al., 2021) and integration with IoT and XBRL for automated reporting systems (Nofel et al., 2024).

Topic 5: Corporate Governance & Compliance

This theme highlights blockchain's role in enhancing governance, transparency, and regulatory compliance. Applications include embedding "compliance by design" in complex processes such as renewable energy credits (Rien Agustin & Susilowati, 2019; Mehta et al., 2023; Fatz et al., 2019; Ashley & Johnson, 2018; Tang & Tang, 2019).

Research emphasizes blockchain's ability to augment, rather than replace, traditional governance (Werner, 2023), while also pointing to the need for new skills and adaptive organizational cultures (Yang, 2020; Kinory et al., 2020; Ronaghi, 2022).

Topic 8: ESG, Corporate Strategy & BCT

This emerging theme investigates blockchain's strategic integration into ESG initiatives and corporate strategy. Blockchain enhances traceability and authenticity of ESG data (Guan & Zhang, 2020; Coita et al., 2019; Du et al., 2023), mitigating greenwashing risks and supporting firm value (Asif et al., 2023; Trotta et al., 2024; Singhania et al., 2024; Wang et al., 2024; Tran et al., 2024).

It also facilitates decentralized governance models (Saurabh et al., 2024; Li & Chen, 2024; Monteiro et al., 2024), positioning blockchain as a tool for forward-looking corporate responsibility. Challenges include regulatory adaptation and workforce skill development (Smith, 2018; Alawadhi & Alrefai, 2024; Oladejo et al., 2024).

Topic 2: Blockchain Applications in Diverse Domains

This theme illustrates blockchain's cross-disciplinary applications beyond AAG. Case studies include agri-food traceability (Scuderi et al., 2019), e-voting (Cucurull et al., 2019), digital identity (Hazar, 2020), education (Marzuki et al., 2019), waste management (An & Mikhaylov, 2023), auditing AI systems (Sgantzos et al., 2025), and applications in the metaverse (AL-Hawamleh et al., 2024; Pandey & Gilmour, 2024). This theme underscores blockchain's expanding relevance and its potential for future cross-sector research.

Comparison with Prior Research

The results of this study align with and extend earlier reviews of blockchain applications in accounting, auditing, and governance (Marrone & Hazelton, 2019; Pimentel & Boulianne, 2020; Secinaro et al., 2021). While prior reviews provided valuable overviews, they primarily offered descriptive accounts of adoption trends and conceptual possibilities. By contrast, the present analysis integrates semantic similarity mapping and thematic clustering, enabling a more granular view of how blockchain-related topics are both interconnected and strategically positioned within the field.

Earlier work identified the transformative potential of blockchain for transparency, trust, and automation in accounting and auditing (Dai & Vasarhelyi, 2017; Cai, 2021). Our findings reinforce these conclusions while highlighting new dimensions. For example, the emergence of ESG and corporate strategy (T8) as a distinct cluster reflects the growing integration of blockchain with sustainability agendas—an area underexplored in earlier reviews. Similarly, the classification of digital transformation in finance (T7) as a niche theme underscores the specialization of research where blockchain converges with AI, IoT, and big data, consistent

with broader “Accounting 4.0” narratives (Albekov et al., 2017; Chyzhevska et al., 2021; Kliestik et al., 2024).

At the same time, our results refine prior categorizations of blockchain’s role in auditing. For instance, Rozario and Vasarhelyi (2018) and Rozario and Thomas (2019) emphasized blockchain’s potential for continuous assurance. Building on this foundation, our analysis identifies smart contracts and crypto-asset auditing (T6) as a motor theme, capturing both the technological innovations and the practical challenges of implementation, such as the “oracle problem” (Sheldon, 2021a) and evolving audit frameworks (Sheldon, 2019).

The strategic thematic map also highlights underdeveloped but central areas. For example, auditing practices, risk, and taxation (T3), positioned as a basic theme, suggest that while adoption drivers and risks have been explored (Ferri et al., 2020; Juma'h & Li, 2023; Elmaasrawy et al., 2025), further theoretical development and empirical validation are still needed. This distinction extends the insights of prior reviews by demonstrating not only which themes dominate but also which remain foundational yet insufficiently developed.

Finally, our findings illustrate blockchain’s expanding scope beyond traditional financial domains. Prior reviews noted applications in education, supply chains, and governance (Stafford & Treiblmaier, 2020; Han et al., 2023). The present analysis confirms these patterns while also identifying applications in diverse domains (T2) and blockchain in ESG (T8) as emerging themes, indicating a broadening research frontier that future reviews will need to account for.

In sum, this study corroborates the conclusions of earlier literature reviews while providing a more nuanced, strategically oriented framework. By situating topics along the dimensions of centrality and development, it extends the field’s understanding of blockchain’s role in AAG and identifies clear opportunities for future research.

Discussion and Conclusion

The application of Latent Dirichlet Allocation (LDA) to 486 academic abstracts has generated the first strategic thematic map of the blockchain research landscape in accounting, auditing, and governance (AAG). This analysis distilled the scholarly discourse into eleven thematic clusters, which were then organized into a conceptual model of Motor, Basic, Niche, and Emerging themes. This discussion interprets these findings, outlines their implications, and acknowledges the study’s limitations.

Interpretation of the Thematic Architecture

The central finding is that research on blockchain in AAG is evolving from broad exploratory inquiry into a more sophisticated ecosystem of specialized themes. The thematic architecture

reveals a persistent tension between blockchain's immense theoretical potential and the practical challenges of its real-world implementation.

Motor Themes, such as Blockchain Research Landscape & Governance (Topic 0) and Supply Chain Transparency (Topic 9), represent the dual engines of progress. One branch of research focuses on mapping the field and its governance needs (Pimentel & Boulianne, 2020; Lombardi et al., 2022), while the other engages with large-scale practical applications that test blockchain's capabilities (Wang & Kogan, 2018). Together, these streams reflect a discipline actively defining its scope in response to blockchain's transformative promise (Dai & Vasarhelyi, 2017).

Progress in these areas rests on Basic Themes such as Bitcoin & Emerging Digital Financial Tools (Topic 4) and Evolution of Auditing Practices (Topic 3). These topics highlight unresolved foundational issues, particularly the urgent need for robust accounting and reporting standards amid rapid innovation (Procházka, 2018; Luo & Yu, 2024). The ambiguity in valuing crypto-assets directly undermines the reliability of financial reporting, creating uncertainty for investors and regulators (Parrondo, 2023).

The emergence of Niche Themes reflects growing specialization. Smart Contracts & Crypto Audits (Topic 6) and Adoption of Audit Tech by Firms (Topic 10) demonstrate how scholarship is moving beyond generalities to address specific technical and organizational challenges. Research on smart contracts emphasizes the need for new assurance methodologies (Hsieh & Brennan, 2022), while adoption studies reveal the gap between blockchain's perceived potential and the realities of implementation, including costs, skill deficits, and integration barriers (Sharma et al., 2023; Akter et al., 2024).

Finally, Emerging Themes point to the field's future trajectory. Clusters such as ESG, Corporate Strategy & BCT (Topic 8), and Corporate Governance & Compliance (Topic 5) highlight blockchain's potential in enabling auditable compliance trails (Fatz et al., 2019), credible sustainability reporting (Asif et al., 2023), and new governance models such as DAOs (Kaal, 2020; Saurabh et al., 2024). These themes illustrate a shift in focus from operational efficiency toward strategic value creation, corporate responsibility, and governance innovation.

Implications of the Findings

The thematic map provides a structured agenda for future inquiry. Scholars should focus on bridging gaps between quadrants—for example, by exploring how technical solutions developed in Niche Themes (e.g., Topic 6) can address foundational challenges in Basic Themes (e.g., Topic 3). The Emerging Themes represent fertile ground for novel contributions, particularly the empirical validation of blockchain's role in ESG reporting and governance. Longitudinal studies are also needed to trace how themes migrate across the map over time, thereby illuminating the life cycle of technological innovation in academia.

For practitioners, the findings emphasize that socio-organizational factors—such as strategic alignment, user acceptance, and professional competencies—are often more critical than purely technical ones. The prominence of adoption challenges (Topic 10) confirms this reality. For educators, the thematic map can guide curriculum development: Basic Themes form the foundation of core knowledge, while Motor and Niche Themes suggest advanced or specialized modules. Regulators and standard-setters should prioritize the Emerging Themes, where timely guidance is most needed to foster trust, comparability, and responsible innovation.

Limitations

This study has several limitations. First, the analysis is based on abstracts, which may not capture the full nuance of each paper. Applying the same approach to full-text articles could yield deeper insights. Second, the dataset was drawn exclusively from Scopus; incorporating additional databases would broaden coverage. Finally, the persistent “first-mile problem”—ensuring the faithful representation of real-world events on blockchain ledgers (Alles & Gray, 2020)—remains an unresolved challenge across all application-oriented themes that text analysis alone cannot resolve.

Conclusion

This study sought to bring clarity and structure to the fragmented and rapidly expanding research at the intersection of blockchain and AAG. By applying LDA topic modeling, we identified eleven thematic clusters and, more importantly, organized them into a four-quadrant strategic map that reveals the field’s intellectual architecture.

The primary contribution of this research is the first data-driven strategic map of blockchain in AAG, demonstrating how the discourse is transitioning from early hype to a more nuanced engagement with the technical, organizational, and strategic complexities of embedding this foundational technology into professional and economic ecosystems.

The thematic map serves as a navigational tool for scholars, practitioners, and regulators. It highlights the field’s established foundations, its current driving forces, its specialized niches, and its emerging frontiers. As blockchain continues to integrate into the fabric of business and governance, this conceptual model provides a robust framework for guiding coherent scholarship, informed practice, and effective policy development in this vital domain.

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this article.

Funding

The author(s) received no financial support for the research, authorship, and/or publication of this article.

References

Abu Afifa, M. M., Vo Van, H., & Le Hoang Van, T. (2023). Blockchain adoption in accounting by an extended UTAUT model: empirical evidence from an emerging economy. *Journal of Financial Reporting and Accounting*, 21(1), 5–44. <https://doi.org/10.1108/JFRA-12-2021-0434>

Abu-Dabaseh, F., Khtatbeh, M. M., Al'Ararah, K., & Alassuli, A. (2025). Exploring the Role of Digital Transformation in Mitigating Accounting Fraud: A Cybersecurity Perspective. *International Review of Management and Marketing*, 15(3), 398.

Agostini, M. (2024). TRANSFORMING CORPORATE GOVERNANCE: EXPLORING TOKENIZATION'S IMPACT ON TRANSPARENCY AND OWNERSHIP — A RESEARCH AGENDA. *Risk Governance and Control: Financial Markets and Institutions*, 14(3), 47–56. <https://doi.org/10.22495/rgcv14i3p5>

Agostini, M. (2024). TRANSFORMING CORPORATE GOVERNANCE: EXPLORING TOKENIZATION'S IMPACT ON TRANSPARENCY AND OWNERSHIP — A RESEARCH AGENDA. *Risk Governance and Control: Financial Markets and Institutions*, 14(3), 47–56. <https://doi.org/10.22495/rgcv14i3p5>

Akter, M., Kummer, T.-F., & Yigitbasioglu, O. (2024). Looking beyond the hype: The challenges of blockchain adoption in accounting. *International Journal of Accounting Information Systems*, 53, 100681. <https://doi.org/10.1016/j.accinf.2024.100681>

Al-Abdullah, M., Alsmadi, I., AlAbdullah, R., & Farkas, B. (2020). Designing privacy-friendly data repositories: a framework for a blockchain that follows the GDPR. *Digital Policy, Regulation and Governance*, 22(5/6), 389–411. <https://doi.org/10.1108/DPRG-04-2020-0050>

Alawadhi, A. S., & Alrefai, A. A. (2024). The Metaverse and Accounting: A Paradigm Shift in Emerging Technologies and Their Implications on Accounting Research. *Journal of Emerging Technologies in Accounting*, 21(2), 19–34. <https://doi.org/10.2308/JETA-2023-031>

Albekov, A. U., Vovchenko, N. G., Andreeva, O. V., & Sichev, R. A. (2017). Block Chain and Financial Controlling in the System of Technological Provision of Large Corporations' Economic Security. *European Research Studies Journal*, 20(3), 3–12.

Aldredge, M., Rogers, C., & Smith, J. (2021). The strategic transformation of accounting into a learned profession. *Industry and Higher Education*, 35(2), 83–88. <https://doi.org/10.1177/0950422220954319>

Alkafaji, B. K. A., Dashtbayaz, M. L., & Salehi, M. (2023). The impact of blockchain on the quality of accounting information: an Iraqi case study. *Risks*, 11(3), 58.

Al-Hattami, H. M. (2024). What factors influence the intention to adopt blockchain technology in accounting education? *Humanities and Social Sciences Communications*, 11(1), 787. <https://doi.org/10.1057/s41599-024-03315-8>

AL-Hawamleh, A., Altarawneh, M., Hikal, H., & Elfedawy, A. (2024). Blockchain Technology and Virtual Asset Accounting in the Metaverse: A Comprehensive Review of Future Directions. *International Journal of Computing and Digital Systems*, 15(1), 1595–1614. <https://doi.org/10.12785/ijcds/1501113>

Al-Htaybat, K., Hutaibat, K., & von Alberti-Alhtaybat, L. (2019). Global brain-reflective accounting practices: Forms of intellectual capital contributing to value creation and sustainable development. *Journal of Intellectual Capital*, 20(6), 733–762. <https://doi.org/10.1108/JIC-01-2019-0016>

Alkhwaldi, A. F., Alidarous, M. M., & Alharasis, E. E. (2024). Antecedents and outcomes of innovative blockchain usage in accounting and auditing profession: an extended UTAUT

model. *Journal of Organizational Change Management*, 37(5), 1102–1132. <https://doi.org/10.1108/JOCM-03-2023-0070>

Alles, M. G. (2015). Drivers of the use and facilitators and obstacles of the evolution of big data by the audit profession. *Accounting Horizons*, 29(2), 439–449.

Alles, M., & Gray, G. L. (2023). Hope or hype? Blockchain and accounting. *International Journal of Digital Accounting Research*, 23, 19–45. https://doi.org/10.4192/1577-8517-v23_2

Alsalmi, N., Ullah, S., & Rafique, M. (2023). Accounting for digital currencies. *Research in International Business and Finance*, 64, Article 101897. <https://doi.org/10.1016/j.ribaf.2023.101897>

ALSAQA, Z. H., Hussein, A. I., & Mahmood, S. M. (2019). The impact of blockchain on accounting information systems. *Journal of Information Technology Management*, 11(3), 62–80. <https://doi.org/10.22059/jitm.2019.74301>

Alshurafat, H., Al-Mawali, H., & Al Shbail, M. O. (2023). The influence of technostress on the intention to use blockchain technology: the perspectives of Jordanian auditors. *Development and Learning in Organizations*, 37(3), 24–27. <https://doi.org/10.1108/DLO-06-2022-0103>

Amanova, G. D., Akimova, B. Z., Saparbaeva, S. S., Moldashbayeva, L. P., & Zholayeva, M. A. (2023). Problems and prospects in development of digital technologies in accounting and auditing at social enterprises of the Republic of Kazakhstan. *Rivista di Studi sulla Sostenibilità*, 13(1), 65–81. <https://doi.org/10.3280/RISS2023-001-S1005>

An, J., & Mikhaylov, A. Y. (2023). Current Waste Management in banks from 11 asian Countries vs sberbank ESG Reporting. *Finance: Theory and Practice*, 27(6), 173–184. <https://doi.org/10.26794/2587-5671-2023-27-6-173-184>

Angeline, Y. K. H., Chin, W. S., Teoh Teng Tenk, M., & Saleh, Z. (2021). Accounting Treatments for Cryptocurrencies in Malaysia: The Hierarchical Component Model Approach. *Asian Journal of Business and Accounting*, 14(2), 137–171. <https://doi.org/10.22452/ajba.vol14no2.5>

Appelbaum, D., & Nehmer, R. A. (2020). Auditing cloud-based blockchain accounting systems. *Journal of Information Systems*, 34(2), 5–21. <https://doi.org/10.2308/isys-52660>

Appelbaum, D., Cohen, E., Kinory, E., & Smith, S. S. (2022). Impediments to Blockchain Adoption. *Journal of Emerging Technologies in Accounting*, 19(2), 199–210. <https://doi.org/10.2308/JETA-19-05-14-26>

Ashley, M. J., & Johnson, M. S. (2018). Establishing a secure, transparent, and autonomous blockchain of custody for renewable energy credits and carbon credits. *IEEE Engineering Management Review*, 46(4), 100–102. <https://doi.org/10.1109/EMR.2018.2874967>

Ashraf, A. M., & Kader, W. A. (2019). Integrating blockchain in nuclear fuel supply chains for transparency of hazardous materials flow. *Proceedings of the International Conference on Industrial Engineering and Operations Management* (p. 943). IEOM Society.

Asif, M., Searcy, C., & Castka, P. (2023). ESG and Industry 5.0: The role of technologies in enhancing ESG disclosure. *Technological Forecasting and Social Change*, 195, Article 122806. <https://doi.org/10.1016/j.techfore.2023.122806>

Asonitou, S. (2020). Technologies to Communicate Accounting Information in the Digital Era: Is Accounting Education Following the Evolutions? In A. Kavoura, E. Kefallonitis, & P. Theodoridis (Eds.), *Springer Proceedings in Business and Economics* (pp. 187–194). Springer Nature Switzerland AG. https://doi.org/10.1007/978-3-030-36126-6_21

Autore, D., Chen, H. A., Clarke, N., & Lin, J. (2024). Blockchain and earnings management: Evidence from the supply chain. *British Accounting Review*, 56(4), 101357. <https://doi.org/10.1016/j.bar.2024.101357>

Bakarich, K. M., Castonguay, J. J., & O'Brien, P. E. (2020). The Use of Blockchains to Enhance Sustainability Reporting and Assurance*. *Accounting Perspectives*, 19(4), 389–412. <https://doi.org/10.1111/1911-3838.12241>

Basu, P., Deb, P., & Singh, A. (2024). Blockchain and the carbon credit ecosystem: sustainable management of the supply chain. *Journal of Business Strategy*, 45(1), 33–40. <https://doi.org/10.1108/JBS-09-2022-0157>

Bellavitis, C., Fisch, C., & Momtaz, P. P. (2023). The rise of decentralized autonomous organizations (DAOs): a first empirical glimpse. *Venture Capital*, 25(2), 187–203. <https://doi.org/10.1080/13691066.2022.2116797>

Bennett, S., Charbonneau, K., Leopold, R., Mezon, L., Paradine, C., Scilipoti, A., & Villmann, R. (2020). Blockchain and Cryptoassets: Insights from Practice*. *Accounting Perspectives*, 19(4), 283–302. <https://doi.org/10.1111/1911-3838.12238>

Bergers, J., Shi, Z., Korsmit, K., & Zhao, Z. (2021). DWH-DIM: A Blockchain Based Decentralized Integrity Verification Model for Data Warehouses. *Proceedings - 2021 IEEE International Conference on Blockchain, Blockchain 2021*, 221–228. <https://doi.org/10.1109/Blockchain53845.2021.00037>

Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. *Journal of Machine Learning Research*, 3(Jan), 993-1022.

Bonyuet, D. (2020). Overview and impact of blockchain on auditing. *International Journal of Digital Accounting Research*, 20, 31–43. https://doi.org/10.4192/1577-8517-v20_2

Bourveau, T., Brendel, J., & Schoenfeld, J. (2024). Decentralized Finance (DeFi) assurance: early evidence. *Review of Accounting Studies*, 29(3), 2209–2253. <https://doi.org/10.1007/s11142-024-09834-8>

Brammertz, W., & Mendelowitz, A. I. (2018). From digital currencies to digital finance: the case for a smart financial contract standard. *Journal of Risk Finance*, 19(1), 76–92. <https://doi.org/10.1108/JRF-02-2017-0025>

Cai, C. W. (2021). Triple-entry accounting with blockchain: How far have we come?. *Accounting & Finance*, 61(1), 71-93.

Cap, C. H., & Leiding, B. (2018). Ensuring resource trust and integrity in web browsers using blockchain technology. In R. Dijkman & R. Matulevicius (Eds.), *Lecture Notes in Business Information Processing* (Vol. 316, pp. 115–125). Springer International Publishing. https://doi.org/10.1007/978-3-319-92898-2_9

Caprolu, M., Pontecorvi, M., Signorini, M., Segarra, C., & Di Pietro, R. (2021). Analysis and Patterns of Unknown Transactions in Bitcoin. *Proceedings - 2021 IEEE International Conference on Blockchain, Blockchain 2021* (pp. 170–179). Institute of Electrical and Electronics Engineers Inc. <https://doi.org/10.1109/Blockchain53845.2021.00031>

Cerchiaro, D., Leo, S., Landriault, E., & De Vega, P. (2025). DLT to boost efficiency for Financial Intermediaries. An application in ESG reporting activities. *Technology Analysis and Strategic Management*, 37(4), 373–386. <https://doi.org/10.1080/09537325.2021.1999921>

Chinedu, E., & Awasthi, A. (2019). Utilizing the blockchain technology as an effective means for supply chain traceability. *Proceedings of the International Conference on Industrial Engineering and Operations Management*, 1277–1278.

Chouaibi, Y., Ardhaoui, R., & Affes, W. (2024). Does good governance moderate the relationship between blockchain technology use and tax evasion? Evidence from STOXX 600. *EuroMed Journal of Business*. Advance online publication. <https://doi.org/10.1108/EMJB-12-2023-0337>

Choudhury, S., Jayaprakash, P., Srinivas, S., Sowmya, S., Shah, T., & Abinaya, R. (2023). A blockchain platform for the truck freight marketplace in India. *Operations Management Research*, 16(2), 684–704. <https://doi.org/10.1007/s12063-023-00353-4>

Chowdhury, E. K., Khan, I. I., & Dhar, B. K. (2023). Strategy for implementing blockchain technology in accounting: Perspectives of stakeholders in a developing nation. *Business Strategy and Development*, 6(3), 477–490. <https://doi.org/10.1002/bsd2.256>

Christ, K. L., & V Helliar, C. (2021). Blockchain technology and modern slavery: Reducing deceptive recruitment in migrant worker populations. *Journal of Business Research*, 131, 112–120. <https://doi.org/10.1016/j.jbusres.2021.03.065>

Christidis, K., & Devetsikiotis, M. (2016). Blockchains and smart contracts for the internet of things. *IEEE Access*, 4, 2292–2303.

Chyzhevska, L., Voloschuk, L., Shatskova, L., & Sokolenko, L. (2021). Digitalization as a Vector of Information Systems Development and Accounting System Modernization. *Studia Universitatis Vasile Goldis Arad, Economics Series*, 31(4), 18–39. <https://doi.org/10.2478/sues-2021-0017>

Coita, D. C., Abrudan, M. M., & Matei, M. C. (2019). Effects of the Blockchain Technology on Human Resources and Marketing: An Exploratory Study. In A. Kavoura, E. Kefallonitis, & A. Giovanis (Eds.), *Springer Proceedings in Business and Economics* (pp. 683–691). Springer Nature Switzerland AG. https://doi.org/10.1007/978-3-030-12453-3_79

Cucurull, J., Rodríguez-Pérez, A., Finogina, T., & Puiggalí, J. (2019). Blockchain-based internet voting: Systems' compliance with international standards. In W. Abramowicz & A. Paschke (Eds.), *Lecture Notes in Business Information Processing* (Vol. 339, pp. 300–312). Springer Nature Switzerland AG. https://doi.org/10.1007/978-3-030-04849-5_27

Dai, J., & Vasarhelyi, M. A. (2017). Toward blockchain-based accounting and assurance. *Journal of Information Systems*, 31(3), 5–21. <https://doi.org/10.2308/isys-51804>

Dai, J., He, N., & Yu, H. (2019). Utilizing blockchain and smart contracts to enable audit 4.0: From the perspective of accountability audit of air pollution control in China. *Journal of Emerging Technologies in Accounting*, 16(2), 23–41. <https://doi.org/10.2308/jeta-52482>

Dasaklis, T. K., Casino, F., Patsakis, C., & Douligeris, C. (2019). A Framework for Supply Chain Traceability Based on Blockchain Tokens. In C. Di Francescomarino, R. Dijkman, & U. Zdun (Eds.), *Lecture Notes in Business Information Processing* (Vol. 362, pp. 704–716). Springer. https://doi.org/10.1007/978-3-030-37453-2_56

Desai, H. (2023). Infusing Blockchain in accounting curricula and practice: expectations, challenges, and strategies. *International Journal of Digital Accounting Research*, 23, 97–135. https://doi.org/10.4192/1577-8517-v23_5

Desplebin, O., Lux, G., & Petit, N. (2024). Inclusion of blockchain in university accounting curricula: an overview of practices and strategies. *Accounting Education*. Advance online publication. <https://doi.org/10.1080/09639284.2024.2321125>

Dimbean-Creta, O. (2017). Fintech - Already new fashion in finance, but what about the future? *Quality - Access to Success*, 18, 25–29.

Du, J., Shi, Y., Li, W., & Chen, Y. (2023). Can blockchain technology be effectively integrated into the real economy? Evidence from corporate investment efficiency. *China Journal of Accounting Research*, 16(2), Article 100292. <https://doi.org/10.1016/j.cjar.2023.100292>

Dubey, K. B., & Goyal, M. (2024). An Improved Intrusion Detection system for securing academic information on the cloud using a blockchain-based security framework. *2024 2nd International Conference on Disruptive Technologies, ICDT 2024* (pp. 434–439). Institute of Electrical and Electronics Engineers Inc. <https://doi.org/10.1109/ICDT61202.2024.10489728>

Dyball, M. C., & Seethamraju, R. (2021). The impact of client use of blockchain technology on audit risk and audit approach—An exploratory study. *International Journal of Auditing*, 25(2), 602–615. <https://doi.org/10.1111/ijau.12238>

Dyball, M. C., & Seethamraju, R. (2022). Client use of blockchain technology: exploring its (potential) impact on financial statement audits of Australian accounting firms. *Accounting, Auditing and Accountability Journal*, 35(7), 1656–1684. <https://doi.org/10.1108/AAAJ-07-2020-4681>

Elmaasrawy, H. E., Tawfik, O. I., & Abdul-Rahaman, A.-R. (2025). Effect of audit client's use of blockchain technology on auditing accounting estimates: evidence from the Middle East. *Journal of Financial Reporting and Accounting*, 23(2), 617–638. <https://doi.org/10.1108/JFRA-08-2023-0499>

Elommal, N., & Manita, R. (2022). How Blockchain Innovation could affect the Audit Profession: A Qualitative Study. *Journal of Innovation Economics and Management*, 37(1), 37–63. <https://doi.org/10.3917/jie.pr1.0103>

Fang, B., Liu, X., Ma, C., & Zhuo, Y. (2023). Blockchain technology adoption and accounting information quality. *Accounting and Finance*, 63(4), 4125–4156. <https://doi.org/10.1111/acfi.13088>

Fatz, F., Hake, P., & Fettke, P. (2019). Towards tax compliance by design: A decentralized validation of tax processes using blockchain technology. *Proceedings - 21st IEEE Conference on Business Informatics, CBI 2019*, 1, 559–568. <https://doi.org/10.1109/CBI.2019.00071>

Felipe Munoz, M., Zhang, K., Shahzad, A., & Ouhimmou, M. (2021). LogLog: A blockchain solution for tracking and certifying wood volumes. *IEEE International Conference on Blockchain and Cryptocurrency, ICBC 2021*. <https://doi.org/10.1109/ICBC51069.2021.9461153>

Ferri, L., Spanò, R., Ginesti, G., & Theodosopoulos, G. (2020). Ascertaining auditors' intentions to use blockchain technology: evidence from the Big 4 accountancy firms in Italy. *Meditari Accountancy Research*, 29(5), 1063–1087. <https://doi.org/10.1108/MEDAR-03-2020-0829>

Gaur, N. (2020). Blockchain challenges in adoption. *Managerial Finance*, 46(6), 849–858. <https://doi.org/10.1108/MF-07-2019-0328>

Gauthier, M. P., & Brender, N. (2021). How do the current auditing standards fit the emergent use of blockchain? *Managerial Auditing Journal*, 36(3), 365–385. <https://doi.org/10.1108/MAJ-12-2019-2513>

Gomaa, A. A., Gomaa, M. I., & Stampone, A. (2019). A transaction on the blockchain: An AIS perspective, intro case to explain transactions on the ERP and the role of the internal and external auditor. *Journal of Emerging Technologies in Accounting*, 16(1), 47–64. <https://doi.org/10.2308/jeta-52412>

Gray, G. L. (2024). An Exploration of the Money Laundering Associated with the Bitfinex Bitcoin Hack. *Journal of Emerging Technologies in Accounting*, 21(1), 43–57. <https://doi.org/10.2308/JETA-2023-017>

Grigoreva, E. A., Garifova, L. F., & Polovkina, E. A. (2019). The future of digital technology in russia: Blockchain as one of the priority directions of development. *International Journal on Emerging Technologies*, 10(2), 42–46.

Guan, X., & Zhang, R. (2020). Improvement of market economy management measures for innovative enterprises under block chain technology. *Proceedings of the International Conference on Electronic Business (ICEB), 2020-December*, 191–199.

Guo, X., Zuo, Y., & Li, D. (2025). When auditing Meets Blockchain: A study on applying blockchain smart contracts in auditing. *International Journal of Accounting Information Systems*, 56, 100730. <https://doi.org/10.1016/j.accinf.2025.100730>

Hakami, T., Sabri, O., Al-Shargabi, B., Rahmat, M. M., & Nashat Attia, O. (2024). A critical review of auditing at the time of blockchain technology – a bibliometric analysis. *EuroMed Journal of Business*, 19(4), 1173–1201. <https://doi.org/10.1108/EMJB-01-2023-0010>

Hamadeh, A. H., Nouraldeen, R. M., Mahboub, R. M., & Hashem, M. S. (2025). Auditors' Intention to Use Blockchain Technology and TAM3: The Moderating Role of Age. *Administrative Sciences*, 15(2), Article 61. <https://doi.org/10.3390/admisci15020061>

Han, H., Shiwakoti, R. K., Jarvis, R., Mordi, C., & Botchie, D. (2023). Accounting and auditing with blockchain technology and artificial Intelligence: A literature review. *International Journal of Accounting Information Systems*, 48, Article 100598. <https://doi.org/10.1016/j.accinf.2022.100598>

Hazar, H. B. (2020). Anonymity in Cryptocurrencies. In *Eurasian Studies in Business and Economics* (Vol. 14, pp. 171–178). Springer Nature Switzerland AG. https://doi.org/10.1007/978-3-030-53536-0_12

Hill, A., Mishra, S., Patlan, A. S., Dorri, A., Dedeoglu, V., Jurdak, R., & Kanhere, S. (2021). BlockTorrent: A Blockchain Enabled Privacy-Preserving Data Availability Protocol for Multi-stakeholder Scenarios. *Proceedings - 2021 IEEE International Conference on Blockchain, Blockchain 2021*, 103–112. <https://doi.org/10.1109/Blockchain53845.2021.00024>

Hsieh, S.-F., & Brennan, G. (2022). Issues, risks, and challenges for auditing crypto asset transactions. *International Journal of Accounting Information Systems*, 46, Article 100569. <https://doi.org/10.1016/j.accinf.2022.100569>

Huang, F., Wang, T., & Yen, J.-C. (2024). Opportunities or Challenges? Audit Risk and Blockchain Disclosures in 10-K Filings. *Auditing: A Journal of Practice & Theory*, 43(2), 131–158. <https://doi.org/10.2308/AJPT-2021-045>

Iansiti, M., & Lakhani, K. R. (2017). The truth about blockchain. *Harvard Business Review*, 95(1), 118-127.

Indrayani, Sukoharsono, E. G., Djamburi, A., & Roekhudin. (2024). Mapping research landscape of emerging technologies in the accounting field: a bibliometric analysis. *Cogent Business & Management*, 11(1), 2407044.

Jackson, A. B., & Luu, S. (2023). Accounting For Digital Assets. *Australian Accounting Review*, 33(3), 302–312. <https://doi.org/10.1111/auar.12402>

Jaradat, Z., Al-Hawamleh, A., Al Shbail, M. O., & Hamdan, A. (2024). Does the adoption of blockchain technology add intangible benefits to the industrial sector? Evidence from Jordan. *Journal of Financial Reporting and Accounting*, 22(2), 327–349. <https://doi.org/10.1108/JFRA-03-2023-0164>

Jena, R. K. (2024). Investigating accounting professionals' intention to adopt blockchain technology. *Review of Accounting and Finance*, 23(3), 375–393. <https://doi.org/10.1108/RAF-06-2023-0185>

Juma'h, A. H., & Li, Y. (2023). The effects of auditors' knowledge, professional skepticism, and perceived adequacy of accounting standards on their intention to use blockchain. *International Journal of Accounting Information Systems*, 51, 100650. <https://doi.org/10.1016/j.accinf.2023.100650>

Juma'h, A., & Albizri, A. (2025). Factor affecting voluntary crypto asset reporting in financial statements: management discretion and long-term financing. *Journal of Decision Systems*. Advance online publication. <https://doi.org/10.1080/12460125.2024.2449336>

Kaal, W. A. (2020). Decentralized Corporate Governance via Blockchain Technology. *Annals of Corporate Governance*, 5(2), 101–147. <https://doi.org/10.1561/109.00000025>

Kavassalis, P., Stieber, H., Breymann, W., Saxton, K., & Gross, F. J. (2018). An innovative RegTech approach to financial risk monitoring and supervisory reporting. *Journal of Risk Finance*, 19(1), 39–55. <https://doi.org/10.1108/JRF-07-2017-0111>

Kennedy, D. B., & Stratopoulos, T. C. (2025). How to Implement a Data Analytics and Emerging Technologies-Enabled Accounting Curriculum. *Journal of Emerging Technologies in Accounting*, 22(1), 45–63. <https://doi.org/10.2308/JETA-2023-040>

Kinory, E., Smith, S. S., & Church, K. S. (2020). Exploring the playground: Blockchain prototype use cases with hyperledger composer. *Journal of Emerging Technologies in Accounting*, 17(1), 77–88. <https://doi.org/10.2308/jeta-52717>

Kleinknecht, L. (2021). Can Blockchain Capabilities Contribute to Sustainable Supply-Chain Governance? *IEEE Engineering Management Review*, 49(4), 150–154. <https://doi.org/10.1109/EMR.2021.3123205>

Kliestik, T., Dragomir, R., Băluță, A. V., Grecu, I., Durana, P., Karabolevski, O. L., Kral, P., Balica, R., Suler, P., Bușu, O. V., Bugaj, M., Voinea, D.-V., Vrbka, J., Cocoșatu, M., Grupac, M., Pera, A., & Gajdosikova, D. (2024). Enterprise generative artificial intelligence technologies, internet of things and blockchain-based fintech management, and digital twin industrial metaverse in the cognitive algorithmic economy. *Oeconomia Copernicana*, 15(4), 1183–1221. <https://doi.org/10.24136/oc.3109>

Kokina, J., Mancha, R., & Pachamanova, D. (2017). Blockchain: Emergent industry adoption and implications for accounting. *Journal of Emerging Technologies in Accounting*, 14(2), 91–100. <https://doi.org/10.2308/jeta-51911>

Kordestani, H., Barkaoui, K., & Zahran, W. (2020). HapiFabric: A Teleconsultation Framework Based on Hyperledger Fabric. *Lecture Notes in Business Information Processing*, 402, 399–414. https://doi.org/10.1007/978-3-030-63396-7_27

Kshetri, N. (2021). Blockchain and sustainable supply chain management in developing countries. *International Journal of Information Management*, 60, Article 102376. <https://doi.org/10.1016/j.ijinfomgt.2021.102376>

Kwilinski, A. (2019). Implementation of blockchain technology in accounting sphere. *Academy of Accounting and Financial Studies Journal*, 23(Special Issue 2), 1–6.

Lee, E. Y., Leeroy, G. C., & Leeroy, W. (2024). Impact of Blockchain on Improving Taxpayers' Compliance: Empirical Evidence from Panel Data Model and Agent-Based Simulation. *Journal of Emerging Technologies in Accounting*, 21(1), 89–109.

Li, S., & Chen, Y. (2024). Governing decentralized autonomous organizations as digital commons. *Journal of Business Venturing Insights*, 21, Article e00450. <https://doi.org/10.1016/j.jbvi.2024.e00450>

Liao, K., Lin, L., & Sun, Y. (2025). Blockchain adoption and corporate financial reporting quality. *Journal of Accounting and Public Policy*, 49, 107265. <https://doi.org/10.1016/j.jacccpubpol.2024.107265>

Lombardi, R., de Villiers, C., Moscariello, N., & Pizzo, M. (2022). The disruption of blockchain in auditing – a systematic literature review and an agenda for future research. *Accounting, Auditing and Accountability Journal*, 35(7), 1534–1565. <https://doi.org/10.1108/AAAJ-10-2020-4992>

Lopez-Pimentel, J. C., Rojas, O., & Monroy, R. (2020). Blockchain and off-chain: A Solution for Audit Issues in Supply Chain Systems. *Proceedings - 2020 IEEE International Conference on Blockchain, Blockchain 2020*, 126–133. <https://doi.org/10.1109/Blockchain50366.2020.00023>

Luo, M., & Yu, S. (2024). Financial reporting for cryptocurrency. *Review of Accounting Studies*, 29(2), 1707–1740. <https://doi.org/10.1007/s11142-022-09741-w>

Luo, Y., Shen, J., Liang, H., Sun, L., & Dong, L. (2024). Carbon monitoring, reporting and verification (MRV) for cleaner built environment: Developing a solar photovoltaic blockchain tool and applications in Hong Kong's building sector. *Journal of Cleaner Production*, 471, Article 143456. <https://doi.org/10.1016/j.jclepro.2024.143456>

Majeed, R. H., & Taha, A. A. D. (2024). A survey study of Iraqi auditors' adoption of blockchain technology. *Asian Review of Accounting*, 32(3), 521–546. <https://doi.org/10.1108/ARA-01-2023-0015>

Marrone, M., & Hazelton, J. (2019). The disruptive and transformative potential of new technologies for accounting, accountants and accountability: A review of current literature and call for further research. *Meditari Accountancy Research*, 27(5), 677–694. <https://doi.org/10.1108/MEDAR-06-2019-0508>

Marzuki, M. M., Majid, W. Z. N. A., Salwani, R., Zawawi, M. Z. M., & Bakar, H. A. (2019). Students' perceptions and learning approaches in accounting: The role of mobile apps technology. *Management and Accounting Review*, 18(3), 1–30.

McGrath, P., McCarthy, L., Marshall, D., & Rehme, J. (2021). Tools and Technologies of Transparency in Sustainable Global Supply Chains. *California Management Review*, 64(1), 67–89. <https://doi.org/10.1177/00081256211045993>

Mehta, M., Khurana, A., & Kumar, V. V. R. (2023). Leveraging Blockchain Technology for Improving the Quality of Corporate Governance. *2023 6th International Conference on Information Systems and Computer Networks, ISCON 2023*. <https://doi.org/10.1109/ISCON57294.2023.10112178>

Meiryani, M., Warganegara, D. L., & Andini, V. (2023). Big Data, Machine Learning, Artificial Intelligence and Blockchain in Corporate Governance. *Foresight and STI Governance*, 17(4), 69–78. <https://doi.org/10.17323/2500-2597.2023.4.69.78>

Moghrabi, I. A. R., & Benameur, K. B. (2022). Determinants for the utilisation of blockchain technologies for accounting in Kuwait. *International Journal of Business Information Systems*, 41(2), 157–176. <https://doi.org/10.1504/ijbis.2022.126129>

Moll, J., & Yigitbasioglu, O. (2019). The role of internet-related technologies in shaping the work of accountants: New directions for accounting research. *British Accounting Review*, 51(6), Article 100833. <https://doi.org/10.1016/j.bar.2019.04.002>

Monteiro, T. D., Sanchez, O. P., & Moraes, G. H. S. M. (2024). Exploring off-chain voting and blockchain in decentralized autonomous organizations. *RAUSP Management Journal*, 59(4), 335–349. <https://doi.org/10.1108/RAUSP-08-2023-0162>

Mutamimah, M., Alifah, S., & Adnjani, M. D. (2023). Corporate governance innovation framework to reduce credit risk in MSMEs using blockchain technology. *Cogent Business and Management*, 10(3), Article 2250504. <https://doi.org/10.1080/23311975.2023.2250504>

Nofel, M., Marzouk, M., Elbardan, H., Saleh, R., & Mogahed, A. (2024). From Sensors to Standardized Financial Reports: A Proposed Automated Accounting System Integrating IoT, Blockchain, and XBRL. *Journal of Risk and Financial Management*, 17(10), Article 445. <https://doi.org/10.3390/jrfm17100445>

Oladje, M. T., Botes, V., Low, M., & Reeves, S. (2024). Blockchain technology disruptions: Exploring accounting and auditing academics and practitioners' perception. *Accounting and Finance*. Advance online publication. <https://doi.org/10.1111/acfi.13383>

O'Leary, D. E. (2017). Configuring blockchain architectures for transaction information in blockchain consortiums: The case of accounting and supply chain systems. *Intelligent Systems in Accounting, Finance and Management*, 24(4), 138–147. <https://doi.org/10.1002/isaf.1417>

O'Leary, D. E. (2018). Open Information Enterprise Transactions: Business Intelligence and Wash and Spoof Transactions in Blockchain and Social Commerce. *Intelligent Systems in Accounting, Finance and Management*, 25(3), 148–158. <https://doi.org/10.1002/isaf.1438>

O'Leary, D. E. (2019). Some issues in blockchain for accounting and the supply chain, with an application of distributed databases to virtual organizations. *Intelligent Systems in Accounting, Finance and Management*, 26(3), 137–149. <https://doi.org/10.1002/isaf.1457>

Olivas-Lujan, M. R. (2019). Blockchains 2019 in e-HRM: Hit or Hype? *Advanced Series in Management*, 23, 117–139. <https://doi.org/10.1108/S1877-636120190000023010>

Oosthoek, K., & Doerr, C. (2020). From Hodl to Heist: Analysis of Cyber Security Threats to Bitcoin Exchanges. *IEEE International Conference on Blockchain and Cryptocurrency, ICBC 2020*. <https://doi.org/10.1109/ICBC48266.2020.9169412>

Pandey, D., & Gilmour, P. (2024). Accounting meets metaverse: navigating the intersection between the real and virtual worlds. *Journal of Financial Reporting and Accounting*, 22(2), 211–226. <https://doi.org/10.1108/JFRA-03-2023-0157>

Parrondo, L. (2023). Cryptoassets: Definitions and accounting treatment under the current International Financial Reporting Standards framework. *Intelligent Systems in Accounting, Finance and Management*, 30(4), 208–227. <https://doi.org/10.1002/isaf.1543>

Petchenko, M., Fomina, T., Balaziuk, O., Smirnova, N., & Luhova, O. (2023). Analysis of trends in the implementation of digitalization in accounting (Ukrainian case). *Financial and Credit Activity: Problems of Theory and Practice*, 1(48), 105–113. <https://doi.org/10.55643/fcaptp.1.48.2023.3951>

Pflueger, D., Kornberger, M., & Mouritsen, J. (2024). What is Blockchain Accounting? A Critical Examination in Relation to Organizing, Governance, and Trust. *European Accounting Review*, 33(4), 1139–1164. <https://doi.org/10.1080/09638180.2022.2147973>

Pimentel, E., & Boulian, E. (2020). Blockchain in Accounting Research and Practice: Current Trends and Future Opportunities*. *Accounting Perspectives*, 19(4), 325–361. <https://doi.org/10.1111/1911-3838.12239>

Pimentel, E., Boulian, E., Eskandari, S., & Clark, J. (2021). Systemizing the challenges of auditing blockchain-based assets. *Journal of Information Systems*, 35(2), 61–75. <https://doi.org/10.2308/ISYS-19-007>

Procházka, D. (2018). Accounting for bitcoin and other cryptocurrencies under IFRS: A comparison and assessment of competing models. *International Journal of Digital Accounting Research*, 18, 161–188. https://doi.org/10.4192/1577-8517-v18_7

Putritama, A., Warsono, S., Ali, S., & Handayani, W. (2024). The Impact of Blockchain Technology on Accounting: A Literature Review. *Complex Systems Informatics and Modeling Quarterly*, 41, 40–54. <https://doi.org/10.7250/csimg.2024-41.03>

Qasim, A., & Kharbat, F. F. (2020). Blockchain technology, business data analytics, and artificial intelligence: Use in the accounting profession and ideas for inclusion into the accounting curriculum. *Journal of Emerging Technologies in Accounting*, 17(1), 107–117. <https://doi.org/10.2308/jeta-52649>

Rien Agustin, F., & Susilowati, D. (2019). Preventing corruption with blockchain technology (case study of Indonesian public procurement). *International Journal of Scientific and Technology Research*, 8(9), 2377–2383.

Rijanto, A. (2021). Blockchain technology adoption in supply chain finance. *Journal of Theoretical and Applied Electronic Commerce Research*, 16(7), 3078–3098. <https://doi.org/10.3390/jtaer16070168>

Rivera, T., & Foderick, D. (2024). Ostrom's Razor: Using Bitcoin to Cut Fraud in Hollywood Accounting. *Journal of Risk and Financial Management*, 17(4), Article 139. <https://doi.org/10.3390/jrfm17040139>

Röder, M., Both, A., & Hinneburg, A. (2015, February). Exploring the space of topic coherence measures. In *Proceedings of the eighth ACM international conference on Web search and data mining* (pp. 399–408).

Ronaghi, M. H. (2022). Contextualizing the impact of blockchain technology on the performance of new firms: The role of corporate governance as an intermediate outcome. *Journal of High Technology Management Research*, 33(2), Article 100438. <https://doi.org/10.1016/j.hitech.2022.100438>

Rozario, A. M., & Thomas, C. (2019). Reengineering the audit with blockchain and smart contracts. *Journal of Emerging Technologies in Accounting*, 16(1), 21–35. <https://doi.org/10.2308/jeta-52432>

Rozario, A. M., & Vasarhelyi, M. A. (2018). Auditing with smart contracts. *International Journal of Digital Accounting Research*, 18, 1–27. https://doi.org/10.4192/1577-8517-v18_1

Sabour, K. A., & Al-Waeli, A. (2023). The effect of blockchain technology as a moderator on the relationship between big data and the risk of financial disclosure (analytical study in the Egyptian and Iraqi stock exchange). *Eastern-European Journal of Enterprise Technologies*, 1(13), 121. <https://doi.org/10.15587/1729-4061.2023.274641>

Sahai, S., Singh, N., & Dayama, P. (2020). Enabling Privacy and Traceability in Supply Chains using Blockchain and Zero Knowledge Proofs. *Proceedings - 2020 IEEE International Conference on Blockchain, Blockchain 2020*, 134–143. <https://doi.org/10.1109/Blockchain50366.2020.00024>

Saurabh, K., Rani, N., & Upadhyay, P. (2024). Towards novel blockchain decentralised autonomous organisation (DAO) led corporate governance framework. *Technological Forecasting and Social Change*, 204, Article 123417. <https://doi.org/10.1016/j.techfore.2024.123417>

Schmitz, J., & Leoni, G. (2019). Accounting and Auditing at the Time of Blockchain Technology: A Research Agenda. *Australian Accounting Review*, 29(2), 331–342. <https://doi.org/10.1111/auar.12286>

Scuderi, A., Foti, V., & Timpanaro, G. (2019). The supply chain value of pod and pgi food products through the application of blockchain. *Quality - Access to Success*, 20(S2), 580–587.

Secinaro, S., Calandra, D., & Biancone, P. (2021). Blockchain, trust, and trust accounting: Can blockchain technology substitute trust created by intermediaries in trust accounting? A theoretical examination. *International Journal of Management Practice*, 14(2), 129–145. <https://doi.org/10.1504/IJMP.2021.113824>

Seidenfad, K., Biermann, J., & Lechner, U. (2023). CarbonEdge: Demonstrating Blockchain-Based Monitoring, Reporting and Verification of Greenhouse Gas Emissions on the Edge. *2023 IEEE International Conference on Blockchain and Cryptocurrency*, ICBC 2023. <https://doi.org/10.1109/ICBC56567.2023.10174891>

Sgantzos, K., Tzavaras, P., Al Hemairy, M., & Porras, E. R. (2025). Triple-Entry Accounting and Other Secure Methods to Preserve User Privacy and Mitigate Financial Risks in AI-Empowered

Lifelong Education. *Journal of Risk and Financial Management*, 18(4), Article 176. <https://doi.org/10.3390/jrfm18040176>

Shapovalova, A., Kuzmenko, O., Polishchuk, O., Larikova, T., & Myronchuk, Z. (2023). Modernization of the national accounting and auditing system using digital transformation tools. *Financial and Credit Activity: Problems of Theory and Practice*, 4(51), 33–52. <https://doi.org/10.55643/fcaptp.4.51.2023.4102>

Sharma, P., Shukla, D. M., & Raj, A. (2023). Blockchain adoption and firm performance: The contingent roles of intangible capital and environmental dynamism. *International Journal of Production Economics*, 256, Article 108727. <https://doi.org/10.1016/j.ijpe.2022.108727>

Sheldon, M. D. (2019). A primer for information technology general control considerations on a private and permissioned blockchain audit. *Current Issues in Auditing*, 13(1), A15–A29. <https://doi.org/10.2308/ciia-52356>

Sheldon, M. D. (2021a). Auditing the blockchain oracle problem. *Journal of Information Systems*, 35(1), 121–133. <https://doi.org/10.2308/ISYS-19-049>

Sievert, C., & Shirley, K. (2014, June). LDavis: A method for visualizing and interpreting topics. In *Proceedings of the workshop on interactive language learning, visualization, and interfaces* (pp. 63–70).

Singh, H., Jain, G., Munjal, A., & Rakesh, S. (2020). Blockchain technology in corporate governance: disrupting chain reaction or not? *Corporate Governance (Bingley)*, 20(1), 67–86. <https://doi.org/10.1108/CG-07-2018-0261>

Singhania, M., Chadha, G., & Prasad, R. (2024). Sustainable finance research: Review and agenda. *International Journal of Finance and Economics*, 29(4), 4010–4045. <https://doi.org/10.1002/ijfe.2854>

Smith, S. S. (2018). Implications of next step blockchain applications for accounting and legal practitioners: A case study. *Australasian Accounting, Business and Finance Journal*, 12(4), 77–90. <https://doi.org/10.14453/aabfj.v12i4.6>

Smith, S. S., Petkov, R., & Lahijani, R. (2019). Blockchain and cryptocurrencies – considerations for treatment and reporting for financial services professionals. *International Journal of Digital Accounting Research*, 19, 59–78. https://doi.org/10.4192/1577-8517-v19_3

Søgaard, J. S. (2021). A blockchain-enabled platform for VAT settlement. *International Journal of Accounting Information Systems*, 40, Article 100502. <https://doi.org/10.1016/j.accinf.2021.100502>

Stafford, T. F., & Treiblmaier, H. (2020). Characteristics of a blockchain ecosystem for secure and sharable electronic medical records. *IEEE Transactions on Engineering Management*, 67(4), 1340–1362.

Stern, M., & Reinstein, A. (2021). A blockchain course for accounting and other business students. *Journal of Accounting Education*, 56, Article 100742. <https://doi.org/10.1016/j.jaccedu.2021.100742>

Swan, M. (2015). *Blockchain: Blueprint for a new economy*. O'Reilly Media, Inc.

Tan, Y., Huang, X., & Li, W. (2023). Does blockchain-based traceability system guarantee information authenticity? An evolutionary game approach. *International Journal of Production Economics*, 264, Article 108974. <https://doi.org/10.1016/j.ijpe.2023.108974>

Tang, Q., & Tang, L. M. (2019). Toward a distributed carbon ledger for carbon emissions trading and accounting for corporate carbon management. *Journal of Emerging Technologies in Accounting*, 16(1), 37–46. <https://doi.org/10.2308/jeta-52409>

Tian, X., & Sarkis, J. (2024). Towards greener trade and global supply chain environmental accounting. An embodied environmental resources blockchain design. *International Journal of Production Research*, 62(8), 2705–2724. <https://doi.org/10.1080/00207543.2023.2232890>

Tran, N. P., Le, Q. T.-T., Vo, A. T., & Vo, D. H. (2024). Digital transformation and corporate restructuring: does corporate governance matter? *Journal of Strategy and Management*. Advance online publication. <https://doi.org/10.1108/JSMA-04-2023-0084>

Trequattrini, R., Palmaccio, M., Turco, M., & Manzari, A. (2024). The contribution of blockchain technologies to anti-corruption practices: A systematic literature review. *Business Strategy and the Environment*, 33(1), 4-18.

Trotta, A., Rania, F., & Strano, E. (2024). Exploring the linkages between FinTech and ESG: A bibliometric perspective. *Research in International Business and Finance*, 69, Article 102200. <https://doi.org/10.1016/j.ribaf.2023.102200>

Veuger, J. (2021). Digitization and Blockchain in Finance, The Netherlands in 2020 and 2021. *International Journal of Applied Economics, Finance and Accounting*, 11(1), 1–22. <https://doi.org/10.33094/8.2017.2021.111.1.22>

Vincent, N. E., Skjellum, A., & Medury, S. (2020). Blockchain architecture: A design that helps CPA firms leverage the technology. *International Journal of Accounting Information Systems*, 38, Article 100466. <https://doi.org/10.1016/j.accinf.2020.100466>

Wang, S., Wen, W., Niu, Y., & Li, X. (2024). Digital transformation and corporate labor investment efficiency. *Emerging Markets Review*, 59, Article 101109. <https://doi.org/10.1016/j.ememar.2024.101109>

Wang, Y., & Kogan, A. (2018). Designing confidentiality-preserving Blockchain-based transaction processing systems. *International Journal of Accounting Information Systems*, 30, 1–18. <https://doi.org/10.1016/j.accinf.2018.06.001>

Werner, J. (2023). Blockchain Governance – A Systematic Literature Review. In M. Papadaki, P. Rupino da Cunha, M. Themistocleous, & K. Christodoulou (Eds.), *Lecture Notes in Business Information Processing* (Vol. 464, pp. 185–197). Springer Nature Switzerland AG. https://doi.org/10.1007/978-3-031-30694-5_14

Werner, J. (2023). Blockchain Governance – A Systematic Literature Review. *Lecture Notes in Business Information Processing*, 464 LNBIP, 185–197. https://doi.org/10.1007/978-3-031-30694-5_14

White, J., & Daniels, C. (2019). Continuous cybersecurity management through blockchain technology. *2019 IEEE Technology and Engineering Management Conference, TEMSCon 2019*. <https://doi.org/10.1109/TEMSCON.2019.8813712>

Widayanti, R., Mutiara, A. B., & Tarigan, A. (2024). Data Governance in Blockchain-Based Systems for Internship Grade Conversion. *APTISI Transactions on Technopreneurship*, 6(3), 509–521. <https://doi.org/10.34306/att.v6i3.487>

Yang, Y. (2020). Research on the New Capability Structure of University Accounting Talents under the Background of Artificial Intelligence and Blockchain. *Proceedings - 2020 3rd International Conference on Smart BlockChain, SmartBlock 2020*, 57–62. <https://doi.org/10.1109/SmartBlock52591.2020.00018>

Youn, S.-Y., Hwang, J., & Ju, N. (2025). Blockchain transparency in reducing second-hand luxury shopping uncertainty and the role of price consciousness. *Fashion and Textiles*, 12(1), 10. <https://doi.org/10.1186/s40691-025-00420-3>

Yu, T. (2024). Blockchain Technology and the Improvement of ESG Information Transparency. *Advances in Transdisciplinary Engineering*, 56, 211–219. <https://doi.org/10.3233/ATDE240431>

Yu, T., Lin, Z., & Tang, Q. (2018). Blockchain: The Introduction and Its Application in Financial Accounting. *Journal of Corporate Accounting and Finance*, 29(4), 37–47. <https://doi.org/10.1002/jcaf.22365>

Zemáneková, A. (2019). Artificial intelligence and blockchain in audit and accounting: Literature review. *WSEAS Transactions on Business and Economics*, 16, 568–581.

Zheng, K., Zheng, L. J., Gauthier, J., Zhou, L., Xu, Y., Behl, A., & Zhang, J. Z. (2022). Blockchain technology for enterprise credit information sharing in supply chain finance. *Journal of Innovation and Knowledge*, 7(4), Article 100256. <https://doi.org/10.1016/j.jik.2022.100256>

Bibliographic information of this paper for citing:

Ebrahimi Kordlar, Ali & Safaei, Mahdi (2025). Topic Modeling Blockchain in Accounting and Audit Research. *Journal of Information Technology Management*, 17 (4), 59-87.
<https://doi.org/10.22059/jitm.2025.386650.3924>

Copyright © 2025, Ali Ebrahimi Kordlar and Mahdi Safaei