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Abstract 

With an increasing reliance on mobile devices, continuous and assured user authentication is 

essential to protect sensitive personal data and digital interactions from unwanted access. 

Based on this background, this research proposed the development of the HybridTouch 

framework for smartphone-based continuous and passive user authentication. The proposed 

HybridTouch combines Convolutional Neural Networks for spatial feature extraction and 

Gated Recurrent Units for temporal sequence analysis. It uses accelerometer, gyroscope, and 

touch data to take advantage of the unique behavioral patterns captured by it. Innovative 

preprocessing techniques have been incorporated into the proposed approach: Discrete 

Wavelet Transform is used for signal denoising, and Variable-Length Adaptive Temporal 

windowing is used for segmentation based on signal entropy to enhance feature 

representation. To eliminate the data scarcity limitation, Generative Adversarial Networks 

were used to synthesize realistic behavioral data that considerably augmented the dataset and 

enhanced model generalization capability. Extensive experiments conducted on the Hand 

Movement, Orientation, and Grasp (HMOG) dataset showed that the proposed HybridTouch 

doi:%20https://doi.org/10.22059/jitm.2025.102924
https://orcid.org/0009-0006-6494-3472
https://orcid.org/0000-0002-6992-1655
https://orcid.org/0000-0002-5310-5389
https://creativecommons.org/licenses/by-nc/4.0/


Journal of Information Technology Management, 2025, Vol. 17, Special Issue, 109 

 

https://jitm.ut.ac.ir/ 

achieved excellent results with authentication accuracy up to 98.8% with real data, growing 

up to 99% with GAN-augmented data. The hybrid model further has an equal error rate of 

1.4% on real data and 1.25% on synthetic data, which is better than any other models 

currently present (Sağbas et al., 2024; Siddiqui et al., 2022; Abuhamad et al., 2020) and all 

implementations of standalone convolutional neural networks and gated recurrent units. 

Keywords: Mobile Authentication, Touch Dynamics, Deep Learning, Smartphone Sensors, 

Convolutional Neural Networks. 

Introduction 

The rapid development of mobile devices and the growing reliance on smartphones as a 

means to perform almost all sorts of daily activities pose significant challenges with regard to 

security and data privacy. Mobile devices, such as smartphones, constitute the heart of 

modern existence, with 5 billion users projected for 2024 and a predicted 6 billion by 2027 

(Nayak et al., 2016). With the proliferation of such devices, fears about data safety, especially 

data privacy, are on the rise. Since smartphones store and process substantial amounts of 

personal data, secure and reliable authentication methods are the need of the hour to guard 

against unauthorized access and maintain individual privacy (Agrawal et al., 2023). 

Traditionally, knowledge-based methods, which include PIN codes, passwords, and patterns, 

as well as static biometric methods such as fingerprints and facial recognition, have been used 

for authenticating mobile devices (Zhao et al., 2024). These methods are vulnerable to 

different types of vulnerabilities. Knowledge-based authentication is vulnerable to attacks like 

brute force, shoulder surfing, and smudge attacks (Nayak et al., 2016). The biometric methods 

that have static characteristics, though enhanced security, provide scope for spoofing and also 

privacy issues while collecting sensitive data.  

To mitigate these disadvantages, continuous authentication techniques have been further 

developed by emphasizing behavioral biometrics and sensor-based authentication (Tran et al., 

2020). In recent years, continuous user authentication using mobile sensors has garnered 

significant interest. This approach provides another layer of security (Mangal et al., 2023) 

through continuous verification of the user's identity, based on the behaviors of touching, gait, 

and patterns of device usage. The utilization of motion sensors-including accelerometers, 

gyroscopes, and pressure sensors-provides continuous tracking of user activity with a very 

high level of secure and nonintrusive authentication. However, despite the above advantages, 

current approaches (Anguita et al., 2013; Abuhamad et al., 2020) are still plagued by several 

challenges, including feature extraction from sensor data, the presence of noise in real-world 

environments, and the limited availability of large, labelled datasets for model training (Zou 

et al., 2020; Centeno et al., 2018). Since deep learning (DL) has shown its utility in so many 

applications, many DL approaches have been introduced to continuous authentication studies 

(Tran et al., 2020; Zou et al., 2020). Although our approach is generic to the development of 
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continuous authentication, in the proposed framework called HybridTouch, touch dynamics 

are exploited, and CNN for feature extraction and GRU for sequential data analysis are used 

to leverage both spatial as well as temporal information from the sensor data for robust 

authentication (Hajiakhoondi et al., 2013; Alfaleh et al., 2024) 

Scientific Contributions 

Ensuring secure and continuous user authentication on mobile devices is a pressing challenge 

because of the growing reliance on smartphones for sensitive digital interactions. Traditional 

authentication methods (Nayak et al., 2016; Zhao et al., 2024; Lu et al., 2018; Amini et al., 

2018), such as passwords or biometric verification, often fall short in providing seamless and 

persistent security. These methods are either prone to security vulnerabilities (Abuhamad et 

al., 2020) or intrusive to the user experience (Ehatisham et al., 2017). With these demands, 

high-level solutions that use behavioral biometrics for delivering passive, continuous, and 

user-friendly authentication have gained more prominence (Shoaib et al., 2013; Shoaib et al., 

2014). By leveraging unique patterns of user interactions, we explore promising avenues that 

utilize data augmentation techniques along with deep learning (DL) to address the above-

mentioned challenges. Novel key scientific contributions include the following: 

a) Developing a hybrid DL model combining CNN for feature extraction and GRU for 

sequential data analysis to enhance continuous authentication accuracy. 

b) Integrating GANs to generate synthetic user data, expand the training dataset, and improve 

the model's generalization capabilities. 

c) Conducting extensive experiments on the HMOG dataset, validating that the proposed 

model outperforms standalone CNN, GRU, and prior models in terms of accuracy and 

robustness. 

d) Performing a comprehensive performance evaluation of the model using the metrics of 

EER, accuracy, precision, and recall. 

The paper contributes to the domain of mobile authentication using DL and data 

augmentation that offers a highly secure, efficient, and realistic possibility for continuous user 

authentication.  

This research introduces HybridTouch, a novel continuous authentication framework that 

leverages touch dynamics data and fuses sophisticated DL with smartphone device sensor 

data to enhance the accuracy and robustness of authentication. The proposed framework will 

be able to identify and recognize characteristic user interaction behaviors on mobile devices 

using powerful preprocessing and modeling algorithms to give a strong identification of the 

users. Figure 1 shows the architecture of the proposed HybridTouch for continuous 

authentication. Data were collected only from the HMOG dataset (Yang et al., 2014), 

including static and dynamic user activities. (Table 1) shows the Summary of HMOG dataset 

characteristics.  
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Figure 1. Proposed Hybrid Touch architecture for continuous authentication 

The preprocessing stage applies DWT for noise removal and VATW for segmentation. 

This guarantees an optimal trade-off between feature extraction and noise reduction. To 

increase the user dataset from 41 to 180, a GAN is used to expand the user dataset, and the 

proposed model is robustly evaluated using 180 users. This augmentation improves the 

generalization ability of a model and explains differences in the behaviour of users. The 

suggested model integrates CNN for feature extraction and GRU for the temporal sequence 

analysis. The model utilizes raw sensor data from accelerometers, gyroscopes, and 

magnetometers, translating it into a high-dimensional embedding space for efficient learning. 

A 10-fold cross-validation is used to ensure robust performance evaluation. For smartphone-

based continuous authentication, several public datasets are available for human activity 

recognition (HAR). However, most of these datasets are limited by their size or the controlled 

conditions under which they are collected, such as fixed-mounted smartphones, which restrict 

their utility for dynamic, real-world applications. For example, while the UCI-HAR dataset 

(Anguita et al., 2013) and WISDM-HARB dataset have been widely used for activity 

recognition and authentication research, their lack of subject-level behavioral information 

poses challenges for robust continuous authentication tasks. To overcome these limitations, 

the Hand Movement, Orientation, and Grasp (HMOG) dataset was chosen as the primary 

source for the proposed framework. In this publicly available dataset (Yang et al., 2014), 100 

participants conducted activities over 24 sessions that included inertial sensors, such as an 

accelerometer, gyroscope, and magnetometer, as well as touch sensor data from performing 

different tasks, like reading, writing, or navigating maps. Activities were performed with the 

user sitting or walking, thus capturing extensive user behavior over various conditions. The 

design of this dataset enables continuous user authentication through analysis of fine-grained 

interaction patterns. Key categories for recorded data consist of accelerometer and gyroscope 

as well as magnetometer readings, together with touch events, for instance, taps, scrolls, or 

keypresses. Such extracted features support behavior interpretation in real-time through 

aspects such as grasp resistance-pressure during touches, and stability (i.e., how touch 
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interactions stabilize within reasonable time intervals), and the dataset's utility does feature 

some infrequent irregularities or missing values in some entries.  

Table 1. Summary of HMOG dataset characteristics 

Category Content 

Accelerometer Timestamp, acceleration force along x/y/z axes 

Subjects 53 (males), 47 (females) 

Number of Examples/Subject (Class) in the range of 1162 to 4639 

Data Preprocessing 

The preprocessing phase in the proposed model is integral to the preparation of raw touch 

data from the HMOG dataset for use in continuous user authentication. Noise reduction, 

normalization, and segmentation are performed, all of which significantly contribute to the 

enhancement of signal quality, and the data is in a state ready for feature extraction and 

classification by the model. 

After denoising, the data undergoes Min-Max normalization, which rescales all feature 

values to the range [0,1]. Mathematically, the normalization of a feature x is shown by Eq. (1) 

as follows. 

xscaled =  
x − xmin

xmax  − x𝑚𝑖𝑛
                                                                                                                (1) 

Here, min(x) and max(x) denote the minimum and maximum of the associated feature x, 

respectively. This transformation ensures that all features are considered equally in the 

learning process, and so features with larger magnitudes are not able to determine the learning 

behaviour of the model. Normalization is particularly useful when sensor data from 

heterogeneous sources with different ranges of values is considered. 

Data segmentation is the last step of preprocessing, which is used to divide continuous raw 

sensor data into temporal segments to facilitate effective analysis and feature extraction. We 

use VATW, which is a dynamic approach to control the scaling of each segmentation window 

according to the amount of within-sensor variability. In this approach, one is provided with 

greater flexibility concerning fixed-length windows, which, if not done carefully, can fail to 

capture relevant data or include irrelevant data, so that temporal aspects are precisely 

represented. Mathematically, the signal x(t) is segmented into overlapping temporal windows 

wi[ t1, t2], where t1 and t2 denote the start and end points of the window. The window 

size∣wi∣ is adaptively chosen according to the entropy H (wi) of the signal contained within 

the window, i.e., the data variability. The entropy is shown in Eq. (2) as follows 

H(Wi)  =  − ∑ pjlog pj
N
j=1                                                                                                         (2) 
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Where N is the number of unique signal patterns in the window and pj is the probability of 

occurrence of the j-th signal pattern in wi. Window size grows when state entropy H(wi) is 

high, i.e., in regions of high variability (e.g., fast gestures), and shrinks when entropy is low, 

i.e., stable or noninformative intervals (e.g., steady hand position). This approach is inspired 

by the adaptive techniques used in gesture recognition studies, where the variability of human 

behavior is a key factor in selecting appropriate segmentation lengths (Kokal et al., 2023; 

Mekruksavanich et al., 2021). The adaptive property of VATW enables the system to increase 

the proportion of time spent analysing high-variance segments and to pick out transient events 

(e.g., taps, swipes, or short movements) whilst decreasing sampling rate during periods of 

more stable, repetitive touch patterns. Formally, the segmentation can be represented in Eq. 

(3) and Eq. (4) as follows: 

Wi =  [ti, tj + Δt]                                                                                                                      (3) 

Wi+1 = ti + Δt/2, tj + 3Δt/2                                                                                                  (4) 

where Δt is the length of the time window, and the overlap between consecutive windows 

is Δt/2 in overlapping temporal windows wi and wi+1. Because of this combined structure, 

each time point is inside two successive windows, keeping temporal continuity and preserving 

inter-window dependence over the data. The data are effectively segmented by VATW in an 

adaptive way; the window length is dynamically determined based on the variability of the 

touch behavior. The segmentation stage yields data sequences that are then used as input to 

the proposed model for feature extraction and classification. Due to this, the system can attain 

improved sensitivity to small variations in touch, which is important for continuous user 

authentication.     

Proposed Deep Learning Model 

In the proposed DL model, the CNN part of the proposed scheme is developed to learn spatial 

information from sensor data to accomplish continuous authentication. CNNs are effective 

both to learn hierarchical feature representations and especially for tasks that utilize structured 

data (e.g., images, time-series signals). The proposed CNN architecture consists of two 

convolutional and max-pooling layers as shown in Figure 1. In this proposed HybridTouch 

model, its architecture consists of multiple layers for the extraction, transformation, and 

classification of both touch-based sensor data. The architecture shown in Table 2 begins with 

a Conv1D layer (Conv1D1) with 5 and 64 filters, followed by MaxPooling1 to filter the 

channels. The second Conv1D layer (Conv1D2) has a kernel size of 5 and 128 filters, and 

MaxPooling2 is then used to further downsample the feature maps. Both convolutional layers 

are characterized by a stride of 2 and padding of 1, thus preserving the input sizes and the 

feature extraction being efficient. A neural network followed by convolutional layers uses a 

GRU at the end point of sequential data. The GRU-type cells are implemented to reflect 
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temporal dependency in the touch data; hence, both the short-term and long-term features are 

represented clearly. In the classification task, three Dense layers are constructed after the 

GRU layer. These dense layers include 128 neurons with a 0.3 dropout rate in the first layer, 

followed by a layer of 64 neurons with a 0.3 dropout, and the final output layer consists of 

two neurons for binary classification. 

Table 2. HybridTouch Model Characteristics 

Layer Name Kernel Size Kernel Number Padding Stride 

Conv1D1 5 64 1 2 

MaxPooling1 2 None 0 2 

Conv1D2 5 128 1 2 

MaxPooling2 2 None 0 2 

GRU - - - - 

Dense1 - 128 - - 

Dense2 - 64 - - 

Output - 2 - - 

Although CNNs are good at learning features, they are not good at certain 

classification/learning tasks, e.g., time-series data, like smartphone sensing data. Such data 

dependencies are strong on the ability of the network to take current and previous inputs into 

account, since a historical situation influences the network's capacity to predict the next state 

(Shorten et al., 2019).  To overcome this, RNN models, able to classify each component of a 

time series, are preferable. In an RNN, the term time t is dependent on the term, t⁻¹. 

Nevertheless, RNNs can be affected by the vanishing gradient issue when they are used with 

long sequences, and consequently, long-range dependencies can hardly be learned well. 

Description of the reset gate rt and the update gate zt that regulate the amount of the previous 

hidden state and the current input to be retained or discarded. The update gate zt sets the 

fraction of the previous hidden state that is to be kept at the current time step. In the 

meantime, the reset gate rt determines the degree of use of the previous hidden state in a 

calculation of the current state. Through these gates, the GRU can learn the long-term 

dependencies without suffering from the vanishing gradient effect observed in standard RNNs 

(Cho et al., 2014).  The computational process of the GRU is as follows: 

Update Gate: The update gate zt is computed as shown in Eq. (5) as follows: 

zt = σ(Wzxt + Uzht−1 + bz)                                                                                                   (5) 
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Where Wz and Uz are weight matrices, xt is the current input, ht−1 is the previous hidden 

state, and bz is the bias term.  

Reset Gate: The reset gate rt is calculated as shown in Eq. (6) as follows: 

rt = σ(Wrxt + Urht−1 + br)                                                                                                    (6)  

Where Wr, Ur, and br are the corresponding weight and bias terms.  

Current Hidden State: The candidate hidden state ht is generated by the reset gate and the 

input as shown in Eq. (7) as follows: 

~ht = tanh(Whxt + Uh(rt ⊙ ht−1) + bh)                                                                             (7) 

Where Wh, Uh, and bh are weight and bias terms, and ⊙ denotes element-wise 

multiplication. 

Final Hidden State: The final hidden state is a weighted average of the previous hidden 

state and the candidate hidden state, influenced by the update gate zt as shown in Eq. (8) as 

follows: 

ht = σ(1 − Zt) ⊙ ht−1 + zt ⊙ ht                                                                                           (8) 

The GRU's ability to control the flow of information through these gates allows it to learn 

long-term dependencies without the gradient-vanishing problem that affects traditional RNNs. 

This makes it particularly suitable for tasks involving sequential data, such as smartphone 

sensing for continuous user authentication (Qin et al., 2023). The model was trained using a 

batch size of 32 over 100 epochs, with categorical cross-entropy as the loss function and the 

Adam optimizer for efficient learning. Early stopping was employed to prevent overfitting by 

halting training when validation loss plateaued, ensuring optimal convergence without 

unnecessary computation (Kingma et al., 2014). 

Performance Metrics 

Several performance metrics were used to properly assess the proposed authentication 

framework for a comprehensive understanding of system dynamics. Model classification 

efficacy and the trade-off between sensitivity and specificity are described through such key 

metrics as false acceptance rate (FAR), false rejection rate (FRR), EER, and accuracy. 

Advanced metrics, such as the Receiver Operating Characteristic curve and Area Under the 

Curve (AUC), are used to further confirm the robustness of the model and its discriminatory 

power. FAR, FRR, accuracy, EER, precision, and recall are calculated with Eq. (9) to Eq. (12) 

as follows, where FA, False Acceptances refers to how many times the imposter has been 

mistakenly labelled as genuine and TR, True Rejections how many times an imposter was 
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correctly rejected because it was not genuine. Again, FR is False Rejection, which indicates 

when a genuine user is wrongly marked as an imposter, while TA refers to True Acceptances, 

which refers to the right identification of a genuine user as genuine. 

1. False Acceptance Rate (FAR): 

FAR =  
FA

FA+TR
                                                                                                                          (9) 

Likelihood of misclassifying an impostor as a genuine user. 

2. False Rejection Rate (FRR): 

FRR =  
FR

FR+TA
                                                                                                                        (10) 

Likelihood of rejecting a genuine user as an impostor. 

3. Accuracy: 

Accuracy =  
TA+TR

TA+TR+FA+FR
                                                                                                     (11) 

Measures the overall classification performance. 

4. Equal Error Rate (EER): 

EER =
FAR+FRR

2
                                                                                                                      (12) 

Error rate at the threshold where FAR equals FRR, indicating system balance. 

5. ROC Curve and AUC: ROC curves visualize the trade-off between FAR and FRR across 

thresholds. The AUC quantifies classification effectiveness, with higher scores reflecting 

superior performance. 

6. Precision and Recall 

Precision: 
TA

TA+FA
  reflecting genuine predictions.                                                                   (13) 

Recall: 
TA

TA+FR
  indicating sensitivity to genuine users.                                                           (14) 
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Data Augmentation with GAN 

The GAN (Goodfellow et al., 2014) is a DL framework that contains two primary 

components: the generator and the discriminator. The discriminator evaluates the generated 

data as real or fake, making it train the generator to eventually produce data closer in nature to 

real data. The models develop in opposition and reach an equilibrium at their dynamic 

proportion during adversarial training. The generator receives some random noise-mostly 

uniform or normal distribution-while the output is synthetic data, and the discriminator tries to 

determine real data vs. generated ones (Antoniou et al., 2017). In the proposed work, WGAN 

is adopted for continuous user authentication data augmentation. This produces synthetic data 

usable for enhancing the performance of the model, especially while dealing with insufficient 

real-world data. 

WGAN Architecture  

The WGAN architecture is a simultaneous training of both the generator and the 

discriminator. A generator learns how to map noise to a distribution that resembles the real 

data. The discriminator attempts to distinguish real from fake data. The design of the 

architecture is such that it overcomes problems like mode collapse by measuring the 

Wasserstein distance between the real and generated data distributions. We define the WGAN 

loss function as a minimax game between the generator and the discriminator, as shown in 

Eq. (15), as follows. 

min
G

max
D

L(D, G)  =  Ex~pr
[logD(x)] + Ex~pg

[log(1 − D(x))]                                              (15) 

Where pr is the real data distribution and pg is the generated data distribution. To improve 

model performance, we replace the binary cross-entropy loss with the Wasserstein distance, 

as seen in Eq. (16). 

W(pr,pg) = infcϵC(pr,pg)E[||x − y||]                                                                                        (16) 

Where C(pr,pg) represents the set of feasible joint distributions for the real and generated 

data. The loss function is adjusted using the Kantorovich-Rubinstein duality to enforce the 

Lipschitz continuity constraint for the discriminator shown in Eq. (17). 

W(pr, pg)  =  sup||D||L≤1Ex~pr
[D(x)] − Ex~pg

[D(x)]                                                           (17) 

Where the discriminator function D satisfies the Lipschitz constraint. Such a constraint 

may be realized through weight clipping of the discriminator during training. Generator and 

discriminator architecture: The generator and discriminator network architecture are as 

follows: The noise is used as the input in the generator. It passes through a CNN layer with 32 

filters, followed by ReLU activation. The first layer of the generator is a dense layer with 32 
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units and sigmoid activation. This adds a dropout layer with dropout at 50%. Finally, it's 

attached to a batch normalization layer followed by one unit in a dense layer activated using 

the Tanh function. The discriminator structure starts with an input CNN layer, which is pretty 

much identical to that of the generator, this time using 32 filters but using ReLU activation. 

The first layer consists of 16 units with Tanh activation, followed by another dense layer with 

8 units and sigmoid activation. Then comes the output layer, which is a final dense layer with 

just one unit, with sigmoid activation. This suggests a model using Wasserstein loss, along 

with weight clipping to combat the mode collapse that occurs during optimization within 

GAN models. Hence, the trained WGAN yields supplementary synthetic sensor data of 

increased quality and diversity of training data to complement the real HMOG dataset. 

Therefore, the designed model has far more significant performance than before in the 

continuous authentication scenario and subsequently better robustness and higher accuracy in 

the actual deployment. 

Experimental and Results Analysis 

The experiments were conducted using the HMOG dataset, which includes data on tactile 

dynamics for continuous user authentication. We aimed to assess the efficacy of the proposed 

model relative to baseline continuous authentication techniques (Abuhamad et al., 2020; 

Mekrusavanich et al., 2021), utilizing criteria including accuracy, EER, precision, and recall 

score. We present the outcome of these experiments in this section and compare this result by 

applying baseline standard models like CNN and GRU. The subsequent subsections discuss 

the architectural design of the proposed model, its training procedure, and experimental 

results. In particular, we compared the proposed model with both a CNN model and a GRU 

model. The CNN Model is a deep convolutional neural network that does not utilise a 

sequential architecture, focusing on the extraction of spatial characteristics while disregarding 

temporal relationships. The GRU Model utilises exclusively GRU layers to capture temporal 

correlations in the touch data, devoid of any spatial feature extraction. These models were 

selected because of their ability to account for spatial structures and sequential dependencies 

in time-series data, which are both qualities desirable for touch-based authentication. The 

HMOG dataset, which includes 100 users' time-series data, was exploited for training the 

model and its evaluation.   

Experiment Setup 

The experiments were performed on the HMOG dataset, which contains data from 100 users 

performing six different activities. To ensure a robust evaluation, the proposed model, 

HybridTouch was trained for 100 epochs using a 10-fold cross-validation technique to avoid 

overfitting and ensure homogeneous results across all users (Anguita et al., 2013). 

TensorFlow/Keras framework is used for implementing the model. The batch size for the 

training protocol was 32, and a learning rate of 0.001 was provided to the Adam optimizer to 

ensure convergence to the best solution. Since it was a multi-class classification, the 
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categorical cross-entropy loss function was suitable as it would be an ideal optimization 

metric in this case. This set of hyperparameters was determined through iterative testing to 

consistently achieve high performance. The training set is divided into 90% training and 10% 

testing for each fold of data. In this experiment, it randomly shuffled the dataset to avoid 

leakage. In the performance measurement, the proposed model has been evaluated using such 

metrics as accuracy, precision, recall, and EER. Early stopping with the criterion validation 

accuracy has been applied during training so that overfitting may be avoided in this training 

(Kingma et al., 2014). Two different scenarios test the performance of the proposed model. In 

the first case, the baseline was a training of the original HMOG dataset without any 

augmentation. The second one would use GANs to synthesize synthetic data that could further 

augment the training dataset for generalization and robustness. Figures 8 and 9 present 

accuracy trends across epochs for the original and GAN-augmented datasets. The results were 

averaged over all folds of the cross-validation to ensure that they are smooth and reliable, as 

they are during training. 

Results  

The proposed model with and without GAN-generated data outperforms all the existing state-

of-the-art DL models (Sağbas et al., 2024; Siddiqui et al., 2022; Frank et al., 2012) in average 

accuracy and EER across all the interactions, as shown in Table 3. Accuracy and EER 

performance of the proposed model in comparison to the existing schemes (Sağbas et al., 

2024) are further depicted in Figures 2 and 3, respectively. It introduces an enhanced level of 

accuracy and decreased EER because of its unique architectural design of a hybrid 

framework. The integration of CNNs for spatial features extraction and GRUs for the 

modeling of time sequences effectively extracts complex patterns from user behavior. 

Advanced preprocessing methods employed include noise elimination using the Discrete 

Wavelet Transform, adaptive temporal windowing for dynamic segmentation, etc., to better 

represent features. Furthermore, GANs are used for data augmentation in the training set to 

enhance robustness and generalization. Thorough testing by 10-fold cross-validation with 

optimized hyperparameters and early stopping ensures that the proposed framework has better 

performance compared to other existing models and proves its ability to integrate spatial, 

temporal, and synthesized data insights. Figures 4 to 7 depict the results obtained by the 

HMOG dataset. The achieved results are presented with a significant gain in accuracy and 

EER regarding all the activities using the baseline models (CNN and GRU). More precisely, 

the proposed model using data generated by GAN demonstrates greater accuracy (99.0%–

99.2%) and lower EER (1.25%) compared to the baseline models (Giorgi et al., 2021). 
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Figure 2. Comparison of the accuracy of the proposed model with existing schemes 

 

 

 

 

Figure 3. Comparison of EER of the proposed model with existing schemes 
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Table 3. Average Metrics on Classifier Evaluation of DL models using HMOG Dataset 

Activity HybridTouch Model CNN Model GRU Model 

Read Sit 

 

 

Accuracy: 98.9%(±0.5%) 

EER: 1.5% (±0.6%) 

Accuracy: 99.0%(±0.4%) 

EER: 1.4% (±0.5%) 

Accuracy: 98.6%(±0.6%) 

EER: 1.6% (±0.7%) 

Read Walk 
Accuracy: 98.8%(±0.6%) 

EER: 1.6% (±0.7%) 
Accuracy: 98.8%(±0.5%) 

EER: 1.6% (±0.7%) 
Accuracy: 98.4%(±0.8%) 

EER: 1.7% (±1.0%) 

Write Sit 
Accuracy: 99.0%(±0.4%) 

EER: 1.3% (±0.5%) 

Accuracy: 98.8%(±0.6%) 

EER: 1.4% (±0.7%) 

Accuracy: 98.5%(±0.9%) 

EER: 1.5% (±0.8%) 

Write Walk 
Accuracy: 98.7%(±0.7%) 

EER: 1.7% (±0.9%) 

Accuracy: 98.6%(±0.9%) 

EER: 1.6% (±1.0%) 

Accuracy: 98.3%(±1.0%) 

EER: 1.8% (±1.2%) 

Map Sit 
Accuracy: 98.9%(±0.5%) 

EER: 1.4% (±0.6%) 
Accuracy: 99.0%(±0.3%) 

EER: 1.3% (±0.4%) 
Accuracy: 98.6%(±0.7%) 

EER: 1.5% (±0.8%) 

Map Walk 
Accuracy: 98.8%(±0.6%) 

EER: 1.5% (±0.7%) 

Accuracy: 98.6%(±0.8%) 

EER: 1.4% (±0.7%) 

Accuracy: 98.5%(±0.8%) 

EER: 1.6% (±0.9%) 

 
Figure 4. Comparison of Accuracy Across Activities 
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Figure 5. Comparison of Accuracy Across Activities (GAN-based data) 

 

Figure 6. ERR vs. Activities (Real Data) 

 

Figure 7. ERR vs. Activities (GAN-based Data) 
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Table 4. Average Metrics on Classifier Evaluation of GAN-based DL Models Using HMOG 

Dataset 

Activity Models Accuracy (%) Accuracy±(%) EER (%) EER±(%) 

Read Sit 

HybridTouch(GAN) 99.1 ±0.4 1.20 ±0.5 

CNN 99.2 ±0.6 1.05 ±0.7 

GRU 98.8 ±0.5 1.30 ±0.8 

Read Walk 

HybridTouch(GAN) 99.0 ±0.5 1.30 ±0.6 

CNN 98.9 ±0.8 1.40 ±0.9 

GRU 98.8 ±0.7 1.50 ±0.9 

Write Sit 

HybridTouch(GAN) 99.2 ±0.4 1.15 ±0.5 

CNN 99.0 ±0.5 1.35 ±0.7 

GRU 98.8 ±0.6 1.45 ±0.8 

Write Walk 

HybridTouch(GAN) 99.0 ±0.4 1.30 ±0.5 

CNN 98.8 ±0.8 1.40 ±0.9 

GRU 98.6 ±0.7 1.60 ±0.8 

Map Sit 

HybridTouch(GAN) 99.1 ±0.3 1.20 ±0.4 

CNN 99.2 ±0.6 1.20 ±0.7 

GRU 98.9 ±0.5 1.35 ±0.8 

Map Walk 

HybridTouch(GAN) 99.0 ±0.5 1.35 ±0.6 

CNN 98.8 ±0.7 1.35 ±0.8 

GRU 98.7 ±0.6 1.40 ±0.9 

The HybridTouch model always shows better performance than the baseline CNN and 

GRU models concerning all tasks in terms of accuracy (98.8%–99.0%) and EER (1.4%), 

respectively, for the sitting and walking tasks. Sitting-based tasks, e.g., "Write Sit," "Map 

Sit," and "ReadSit,” achieve the best accuracy, while walking-based tasks have slightly lower 

accuracy and higher EER, especially for the GRU model. This indicates that the proposed 

model is better suited to stable conditions, but could be improved for dynamic task conditions 

such as walking. When trained using the GAN-synthesized data, the proposed model features 

a significant performance improvement, including a variety of accuracy from 99.0% to 99.2% 

and EER of 1.25% decrease, as shown in Table 4. The improved performance, especially on 

seat-based tasks, illustrates the model's capacity to perform well on a variety of activity types, 

while at the same time being better than baseline models on walking tasks. These 

observations highlight the power of GAN data augmentation in improving the overall 
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proposed model performance for continuous user authentication. Figure 8 shows the increase 

in model accuracy across epochs that can be attributed to the iterative optimization process 

during training. As the model is exposed to more data, its weights are progressively updated 

through backpropagation as it minimizes the error on predictions. Adam optimizer with 

learning rate 0.001 efficiently and stably converges towards the minimum while categorical 

cross-entropy loss is used to teach the model separations between classes. Advanced 

techniques in preprocessing as well as the extraction of features facilitate the model's ability 

to find meaningful patterns while improving predictions step by step. Moreover, early 

stopping prevents overfitting, and the accuracy is guaranteed to increase as the model 

converges towards optimal performance. The gain in model accuracy resulting from GAN-

based data augmentation is attributable to the diversity and richness provided by the synthetic 

data, as illustrated in Figure 9. GANs generate additional training samples that replicate 

authentic user behaviour, hence enhancing the model's ability to generalise to unfamiliar data.  

Thus, this enriched data set allows capturing a wider gamut of patterns of behavior at 

training time, resulting in more appropriate predictions. Since the GAN-augmented data helps 

cope with the effects of data poverty, the augmented model is a lot more rugged and learns 

using a much better distribution of different patterns of behavior across epochs. These 

consequently improve the efficiency of the prediction model. Figure 10 clearly shows the 

improvement in the AUC when using GAN-generated data, reflecting enhanced model 

robustness and better discrimination between classes. The proposed model with GAN 

achieves a higher AUC, indicating improved True Positive Rates (TPR) at lower False 

Positive Rates (FPR). The findings show a significant performance improvement when 

augmented data is used, by improving accuracy, precision, and recall across all users. Tasks, 

like Map Sit and Write Sit, show the best performance, demonstrating the model's ability to 

perform well in stable conditions. Even if the metrics in the activities that involve walking are 

lower, the model still outperforms the baseline methods. Introducing augmented data 

dramatically increases not only the overall accuracy and recall but also the robustness of 

authentication. These results highlight the essential contribution that data augmentation plays 

in enhancing performance in a range of continuous authentication tasks, which are in 

agreement with prior work that has focused its power on data scarcity and how to generalize 

the model (Goodfellow et al., 2014; Shorten et al., 2019). 
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Figure 8. Model Accuracy vs. Epoch 

 

 

Figure 9. Model Accuracy vs. Epoch (GAN-based Data) 
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Figure 10. ROC Curve Comparison 

Conclusion 

Smartphones have become ubiquitous devices that are used for operations, e.g., mobile 

banking, communication, and storage of personally identifiable information, and therefore, 

secure mechanisms of protection of sensitive information are necessary. To meet the 

increasing need for continuous and uncompromised authentication schemes, we propose a 

framework for continuous authentication that uses data from smartphone sensors. The 

framework combines CNN for feature extraction and GRU for sequential pattern analysis, 

which allows for an in-depth understanding of user behaviour. In particular, GANs are used 

for creating synthetic data that solves the data scarcity problem and considerably improves the 

model's usability and generalization process. Compared with baseline models including 

common LSTMs, GRUs, and CNN alone, the proposed model achieves significantly high 

performance in terms of authentication accuracy (98.8%) and an EER (1.4%). The integration 

of GANs has significantly enhanced the proposed framework by augmenting the dataset with 

high-fidelity synthetic samples, capturing the variability in user activity patterns, and enabling 

robust generalization across diverse behaviors. This feature also reduces overfitting, which is 

a common problem in authentication models. The proposed system, with continuous, non-

intrusive, and secure user authentication, is a significant step forward in mobile security. This 

framework uses advanced modeling and novel data augmentation techniques, which are a 

significant advancement for DL-based continuous authentication systems on cellphones and 

facilitate future advancements. Although GAN-based augmentation effectively tackles the 

problem of data scarcity, future work might explore other generator models, for example, 

Variational Autoencoders (VAEs) and Diffusion Models, to be able to present diverse and 

realistic synthetic data. In addition, transfer learning and self-supervised learning (SSL) have 

more promising opportunities with unlabelled data and better generalisation of the models. 

Federated Learning improves privacy-preserving training by decentralized model construction 
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over user data, which improves security as well as usability. The further research has to focus 

on efficiency and scalability that guarantees the use of such models on mobile phones without 

sacrificing either accuracy or experience. 
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