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Abstract 

Temporal databases, quickly rising in size, are distinguished by their capacity to maintain the 

older version of data objects against actions on them, allowing logical deletions. Queries for 

historical data are particularly costly due to the linear scanning of temporal versions. 

Temporal data structures like time-split B-Tree or multiversion B-Tree are working 

underlying the state-of-the-art temporal databases. So far, most efficient temporal data 

structures are partially persistent or fully persistent, but none of them support retroactive 

queries. On the other hand, efficient temporal indexing is required to address bulk loading in a 

real-life application. To the best of our knowledge, there is no efficient solution for bulk 

loading and updating retroactive index structures. This article seeks to offer a new data 

structure, the Retroactive B-Tree (RBT), to facilitate retroactive operations in temporal 

databases as well as bulk loading. It presents theoretical and empirical research and analysis 

of the suggested data structure and its relevant operations. The experiments were conducted to 

demonstrate the performance of the proposed retroactive B-Tree in terms of execution time, 

I/O complexity, space complexity, and bulk loading. The obtained results show that indexing 
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with a buffer is the most powerful model for existing temporal databases for implementing a 

retroactive B-Tree. The tree of lists architecture is observed as an I/O efficient data structure 

for all variants of temporal indexing for large databases. 

Keywords: Indexing, Retroactive Query Answering, Temporal Databases, Retroactive B-

Tree, Persistent B-Tree, Temporal Database Indexing Problem. 

Introduction 

Aspects of the real world are stored in the databases. Dynamic characteristics are challenging 

to record and manage in traditional databases. The most recent version of the modelled 

environment can only be stored using conventional database models. Future updates overwrite 

the current record. As a result, it cannot access past data for predictive or trend analysis. This 

limitation can hinder the ability to make informed decisions based on historical trends. To 

overcome this challenge, temporal databases have been developed. These databases are 

designed to handle dynamic data and allow for easy access to historical records for analysis. 

By utilizing these advanced database technologies, organizations can gain valuable insights 

from past data, predict future trends, and make more informed decisions. This enables them to 

stay ahead of the competition and adapt quickly to changing market conditions. Ultimately, by 

leveraging these modern database solutions, businesses can unlock the full potential of their 

data and drive innovation in their operations. 

Retroactive indexing is necessary for dynamic applications that demand ad hoc version 

management, audit trail, backwards-compatible updates, and mistake repair. Users of the 

application can study records through temporal queries to verify the propagation of changes, 

execute rollback operations, and/or analyze previous observations. The databases that provide 

the attributes help us analyze and model the entity’s dynamic evolution and locate causal or 

temporal relationships between them. Due to the high cost and limited memory capacity of 

disc technology, historical database searches were initially not feasible. However, large 

storage capacity will become more accessible as external memory technology advances in the 

future (George Copeland, 1980). More information can now be stored for a very long period. 

As a result, database systems with temporal support or version management have become 

increasingly popular. However, recent bibliographic research demonstrates that handling 

temporal data has become more critical. Effective temporal data processing enables various 

fascinating real-world applications, including advanced business analysis, fraud detection, 

automation, and more. A time series database (TSDB) software system is tailored for storing 

and delivering time series using related pairs of time and value. In several disciplines, time 

series are also known as trends. Early time series databases were frequently used to support 

industrial applications capable of reliably retaining recorded values from sensory equipment. 
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However, they are used to supporting a far larger range of applications nowadays. Science 

and web applications both benefit from using a time-series database. With certain inherent 

restrictions that will be covered later, IBM (Cynthia et al., 2010), Teradata (Anton et al., 

2016), Oracle (Ravi, 2007), and Microsoft (Lomet et al, 2008) have provided temporal 

database systems. The retroactive B-Tree is a novel data structure that this article presents to 

facilitate retroactive queries in temporal databases. This article makes the following key 

contributions: (a) using bulk operations for retroactive index structures, this work defines the 

first retroactive B-tree, an asymptotically optimal data structure. The bulk operation shows 

that previous techniques required significant I/O costs for external memory access. The 

objective here is to reduce the number of I/O operations with the proposed paradigm; (b) The 

research findings show that our recommended techniques greatly outperform the current state 

of the art in terms of performance. 

The rest of the paper is structured as follows: The related work section summarizes prior 

works that are still relevant and discusses the critical characteristics of temporal databases and 

the shortcomings of the current state of the art that necessitate novel indexing methods. 

Limitations with the existing state of the art present the problem formulation. A proposed 

novel indexing model, Retroactive B-Tree, is shown in the proposed model section. The 

proposed method for bulk loading is applied, and the outcomes are shown in the results 

section. The last section of this paper provides a conclusion of the overall observations, 

implementations, and limitations of the research carried out. 

Literature Review 

We go through the pertinent state-of-the-art challenges, related index structures, and bulk-

loading and bulk-updating procedures in this part. Consider the processing of temporal 

inquiries as well, according to the state of the art. Traditional database systems usually 

maintain a single version of the data. However, several applications, including those for 

engineering design and statistics, moving-object records, governance, finance, and legal 

records, as well as applications for inventory control and scheduling, require access to the 

historical data (Rudolf & Mario, 1977; Gultekin & Richard, 1995; Taghva et al., 2016; 

Harshit & Santosh, 2021; Ruijie et al., 2022). These applications need a custom database 

structure to handle multiversion data and maintain excellent query performance and space 

constraints. 

The design of database structures for storing multiversion data has advanced significantly, 

according to research in the field (Daniar & Bernhard, 2013; Lars Arge et al., 1999; Tuukka et 

al., 2008; Tuukka et al., 2009; Lomet & Betty, 1989; Betty et al., 2004). For storing 

multiversion data, a comprehensive form of B-Tree and B+Tree is implemented (Rudolf & 

Mario, 1977; Daniar & Bernhard, 2013; Lars Arge et al., 1999; Tuukka et al., 2008; Douglas, 

1979; Lars Arge, 2003; Lars Arge et al., 2003). These thorough implementations provide 
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multiversion concurrency management and are effective for precise match queries. One can 

also leverage snapshot isolation to provide multiversion concurrency control (Hal et al., 2007; 

Alan et al., 2005). However, these structures were insufficient for range queries since it could 

be necessary to manually scan each consecutive entry of a certain version, adding to the time 

and space complexity. It is further noted that none of the models has perfect logarithmic 

execution times for all operations. 

The eternal database prototype employs the time-split B+tree in (Lomet et al., 2005); 

however, it does not condense pages. A multiversion structure that ensures logarithmic 

execution durations for all operations, but does not offer concurrency control, is the 

multiversion B+ tree in (Peter et al., 1996). Other MVBT variations have been implemented 

by Tuukka et al. (2008) and Jaluta et al. (2005), offering full concurrency control but with 

slower updating operations. Several persistent models of index structures, bulk loading, and 

bulk updates have been reported in the literature. Partial persistence is a concept that is 

frequently utilized in computational geometry (Michael et al., 1993; Marios et al., 2006) and 

algorithm design. In databases, the problem with partial persistence is sometimes referred to 

as versioning, transaction time, and system time (Lars Arge et al., 2003). The partial persistent 

model enables the operations (Leveldb, 2011; Krishna & Michels, 2012) in the present 

version of the temporal database only. Commercial organizations have developed 

multiversion systems, including IBM (Cynthia et al., 2010), Teradata (Anton et al., 2016), 

Oracle (Ravi, 2007), and Microsoft (Lomet et al, 2008). Yufei & Dimitris (2001), Rui & 

Martin (2010), and Elisa et al. (2012) have developed several persistent B-trees, allowing 

range queries over older versions and providing similar query performance to a fundamental 

B+tree. Only a partial-persistent model was used in the investigation of persistent B-trees. The 

design of moving object database indexes is significantly impacted by MVBT and other partly 

persistent B-trees (Marios et al., 2006). Retroactively speaking, the issue with bulk loading 

and updates has not yet been sufficiently rectified. The first bulk loading method puts all 

active nodes into memory using a partly persistent B-tree (Tuukka et al., 2009). Since 

dynamic databases are significantly larger than the memory capacity, this assumption isn’t 

always true. Data tuples are organized as sorted maps in key-value stores like HBase (2017) 

and levelDB (2011), which also offer effective key range queries. However, it is impossible to 

utilize range searches over non-key properties, such as temporal queries. However, these 

systems leverage the LSM tree rather than the traditional B+ tree, which reduces the cost of 

updates. The updates in LSM Tree still need to be merged with preceding data, resulting in a 

significant data merging overhead and limiting the throughput for insertion. Time series 

databases, like BTrDb (Michael & David, 2016), Druid (Fangjin et al., 2014), Gorilla 

(Tuomas et al., 2015), Waterwheel (Li Wang et al, 2018), and MVlevelDB (Zhao et al., 2021), 

are made for low-latency, real-time queries on time series data. However, due to the absence 

of secondary range indexes, they do not provide effective range searches over non-temporal 

properties. 
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Limitations of the Existing State of Art 

The insights from the literature review on the current state of the art are presented in this part. 

Our observations are also listed in Table 1. Temporal databases have the following 

characteristics: they allow logical deletions, they preserve the earlier version of data objects 

against operations on them, and their size increases quickly. Queries become quite costly 

since older versions are linearly scanned. Range queries must be supported across a certain 

subset of past versions and on a particular past version. Traditional B-trees and their variants 

are not appropriate for efficiently indexing temporal databases because they can index only 

one database snapshot. As a result, several temporal extensions for B-trees (Ruijie et al., 2022; 

Daniar & Bernhard, 2013; Tuukka et al., 2008; Tuukka et al., 2009; Peter et al., 1996; Lehman 

& S Bing, 1981) have been created. The MVBT (Tuukka et al., 2008; Tuukka et al., 2009) is 

the first partially permanent index structure enabling temporal key-range queries, insertions, 

updates, and removals. However, the MVBT or the time-split B-tree (Ruijie et al., 2022; John 

et al., 2016) does not support efficient algorithms for bulk loading and bulk updates compared 

to MVBT+ and MVBT-LRU (Tuukka et al., 2008, 2009). The design of efficient algorithms 

for partially persistent B-Trees has been reported in the past, while very few research articles 

have defined retroactive indexing problems. The persistent changes deal with the current or a 

past version and require a more straightforward treatment, whereas the retroactive changes 

deal with both the current and past versions. This article discusses bulk loading and updating 

across retroactive B-Trees supporting the key and time range query. 

Table 1. Limitations of the Existing State of Art 

Existing 

Systems 

Query Efficiency 

Base Limitations Key 

Range 

Time 

Range 

HBase (2017) Yes No LSM Tree No Support for Indexes 

LevelDB 

(2011) 
Yes No 

Used with Hive 

or Mapreduce. 

It may cause memory issues and no support for 

query optimization. 

BTrDb 

(Michael & 

David, 2016) 

No Yes Berkeley Tree Supports Point query over a time range 

Druid (Fangjin 

et al., 2014) 
No Yes Rest API 

Supports Point query over a time range, Slow, 

Update Latency is high. 

Gorilla 

(Tuomas et al., 

2015) 

No Yes 
In-memory 

TSDB 

Supports Point query over a time range, Slow, 

Update Latency is high. 

Waterwheel (Li 

Wang et al, 

2018) 

Yes Yes LSMV Tree 

Proposed models are based on the template B+ 

tree and applied to IoT-based data streaming. 

While the Chrono size is too short, about 200ms, 

the data streaming rate was also slow. 
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MVlevelDB 

(Zhao et al., 

2021) 

Yes Yes 
LSMV 

Tree 

Proposed models are based on the template B+ 

tree and applied to IoT-based data streaming. 

While the Chrono size is too short, about 200ms, 

and the data streaming rate was also slow. 

MVBT 

(Tuukka et al., 
2009) 

Yes No B+ Tree 

Does not support the Time range query and is 

also unable to manage Buffer tree splitting and 
synchronization with version management. 

Indexing Problem in Temporal Databases 

This paper presents a retroactive B-tree that efficiently supports mixed operations such as 

insert, delete, update, and query over bulk-loaded data. This section outlines several indexing 

challenges observed in the literature: (a) A major issue is the lack of attention to data splitting 

and distribution among multiple nodes as the size of the versioned database grows. This study 

addresses the need to synchronize node expansion with version management. (b) The 

concepts of versioning, transaction time, and system time are commonly used to describe 

partial persistence issues in databases (Arge, 2003). (c) To the best of our knowledge, no prior 

research has explored a retroactive multiversion B-tree. In this study, we compare our 

empirical findings with the current state-of-the-art approaches. 

It has also been observed that the concept of multiple discrete time conceptions for keeping 

or querying the temporal database has not been effectively addressed in research articles on 

this subject, utilising any form of the B-Tree. Time is typically seen as a continuous variable. 

The perspective of time must be discrete for a time model to be implemented on discrete 

computer hardware. This viewpoint is what our paper adopts. A conceptual view is given in 

the preliminaries section. 

Methodology  

This section presents the implementation of a retroactive B-Tree supporting retroactive 

queries. This computational model works on a single processor configured with a limited 

internal memory capacity and a huge external memory space. The proposed retroactive model 

is achieved with the modification of the B-Tree algorithm licensed to SPDXLicense-

Identifier-GPL-2.0 (Spdx, 2020). A sample B-Tree of SPDX is depicted in Figure 1. The 

suggested B-Tree data structure is bound by the following: Support a single process 

execution. The maximum key size is 120 bytes, the maximum data page size is 64K, and the 

maximum page size is 65024 bytes. The proposed temporal B-Tree is shown in Figure 2 with 

two versions of the B-Tree. We obtained the retroactivity on the basic B-Tree model by 

maintaining the various versions with the help of the following five algorithms. 
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1. Initialization 

Algorithm 1 for retroactive B-tree initialization works by initializing the timeline variables 

and memory size.  

 

Algorithm 1: Retroactive B-Tree Initialization 

 

procedure SET INITIAL(Btree < T > initial) 

call timeline.clear() 

size = 0 

initial = initial 

make operation(Operations<T>Operation::INITIAL, 0, -1) 

end procedure 

 

 

Figure 1. Traditional B-Tree 
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Figure 2. Retroactive B-Tree, dotted lines indicate the version 

2. Insertion 

Algorithm 2 for retroactive B-Tree insertion works by inserting a value “k” into a specified 

version and propagating the same till the current version of the tree by using algorithm 5 for 

updating. Algorithm 5 is responsible for updating the version information of the nodes in the 

B-Tree as the insertion operation propagates through different versions. This ensures that the 

changes made during retroactive insertion are reflected accurately in each version of the tree. 

The process starts by inserting the value “k” into the specified version of the tree using 

Algorithm 2. This insertion may require splitting nodes and creating new ones to maintain the 

B-Tree properties. Once the value “k” has been successfully inserted into the specified 

version, Algorithm 5 is used to update the version information of all affected nodes. The 

update process involves traversing from the leaf node where “k” was inserted up to the root of 

the tree, adjusting version numbers as needed. By doing so, each version of the B-Tree 

reflects the correct state after inserting “k”, allowing for efficient querying and modification 

of past versions. 

 

Algorithm 2: Retroactive B-Tree Insertion Algorithm 

 
procedure INSERT(Tk, int version = −1) 

make operation( Operations<T> {Operation::INSERT, k}, version) 

end procedure 
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3. Deletion 

The process to remove an element from any specified version of the retroactive B-Tree is 

given in Algorithm 3. After deleting the desired element, the algorithm creates a new version 

of the specified current version of the tree by using algorithm 5. This new version of the tree 

will reflect the changes made by deleting the element, while still maintaining the retroactive 

property of being able to query the state of the tree at any point in time. The update process 

ensures that all previous versions of the tree remain unchanged, allowing for efficient and 

consistent access to historical data. By following these algorithms, users can easily 

manipulate and track changes in the retroactive B-Tree structure without compromising its 

integrity or performance. 

 

Algorithm 3: Retroactive B-Tree Deletion Algorithm 

 

procedure REMOVE(Tk, int version = −1) 

make operation( Operations<T> {Operation::REMOVE, k}, version) 

end procedure 

 

4. Update Operation 

The update operation for the retroactive B-Tree, to modify an existing value in the tree by a 

new value, is given in Algorithm 4. After updating the desired element, the algorithm creates a 

new version of the specified current version of the tree by using algorithm 5. This new version 

of the tree will reflect the changes made during the update operation, ensuring that the 

updated retroactive B-Tree remains consistent and up to date. 

The algorithm considers the structure of the tree and ensures that all necessary adjustments 

are made to maintain its properties. By following this process, users can easily modify values 

in a retroactive B-Tree without compromising its integrity. 

 

Algorithm 4: Retroactive B-Tree Update Algorithm 

 

procedure UPDATE(ToldK,TnewK, int version = −1) 

make operation( Operations<T>{Operation::UPDATE, oldK, newK}, version) 

end procedure 
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5. Retroactive B-Tree Version Update 

It is expected to maintain an updated version of the retroactive B-Tree during operations such 

as inserting, deleting, or updating over a timestamp. The retroactive B-Tree version update 

algorithm rolls back to the specified version under an operation, creates a new version of the 

B-Tree on the specified timestamp, and propagates the result update until the current version. 

This process ensures that the retroactive B-Tree remains consistent and accurate throughout 

all operations, allowing for efficient retrieval of data at any point in time. By constantly 

updating and propagating changes to each version of the B-Tree, users can easily access 

historical data and track changes over time. This level of detail and precision is crucial for 

applications that require a high level of data integrity and historical accuracy. The retroactive 

B-Tree version update algorithm plays a key role in maintaining this level of consistency and 

reliability within the system. 

 

Algorithm 5: Retroactive B-Tree Version Update 

 

procedure MAKE OPERATION(Operations<T> op, int version=-1) 

version = (version == −1||version < size)? version=size:version 

if version=size then 

timeline.emplace back(vector<Operations<T >>{op}) 

inc() 

else timeline[version].emplace back(op) 

end if 

end procedure 

 

This process ensures that the retroactive B-Tree remains consistent and accurate 

throughout all operations, allowing for efficient retrieval of data at any point in time. By 

constantly updating and propagating changes to the tree, users can access historical versions 

of the data while still being able to make real-time updates. 

This level of flexibility and control over the data structure is crucial for applications that 

require a high level of data integrity and consistency. The retroactive B-Tree version update 

algorithm plays a key role in maintaining this balance between historical accuracy and real-

time updates. 

Experimental Setup 

In this section, we present the details about the experimental setup and the various datasets 

through which empirical analysis of the proposed data structure is carried out. 
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1. Setup 

The B-Tree algorithm licensed to SPDX-License-Identifier- GPL-2.0 (Spdx, 2020) is used to 

implement all algorithms in C. By adding one more term “t” to an index item, RBT is added 

on top of the current B-Tree. The empirical evaluation is carried out on an ASUS-VivoBook-

R542U workstation with an Intel Core i7-8550U and 8GB of memory running Windows OS 

(Win10), a magnetic disk (HGST HTS541010B7E610, 1TB), and an SSD (Lexar SSD, 256 

GB). We solely used the raw device interface in our research to prevent the operating system 

from affecting the results. We conducted our experiment using pages of 4KB, 8KB, and 16KB 

in size. In addition, we set the buffer cache size to be the block size of 512 KB, and the ratio 

of the L1 cache is set to be 32KB, as 512 KB/16 processes. So, the size of a block for the 

node size of 25 is calculated as 32/25, i.e., 1.28. Thus, we get the maximum number of 

degrees for the memory B-Tree to be 1280. For each data set in our examination, we 

randomly selected 10 versions and calculated their estimated checkout time. The OS page 

cache was cleared before each run, and each experiment was performed five times. We took 

the average of the remaining three trials after excluding the two extreme numbers from the 

five trials due to experimental variation. Table 2 represents the running time of the B-Tree 

bulk loading operations on the setup mentioned above. 

2. Data 

Our experiments use workloads like those used in earlier experimental investigations using 

versioned databases (Cynthia et al., 2010; Betty et al., 2004; Elisa et al., 2012). We have 

considered the index bulk loading workload in this experiment. We look at how the quantity 

of update and delete operations affects I/O loading performance and space use. We have six 

files to load: db50, udb0, udb25, udb50, udb75, and udb100. The performance of the 

retroactive B-Tree has been evaluated using the synthetic data set of randomly generated 

1,000,000,000 operations in each file. A larger workload than the specified is not considered 

due to expensive execution time and constraints with the below setup. We divided the dataset 

by a specific proportion of insertions, updates, and search queries to analyze the execution 

time of the proposed algorithms. 

Case 1: The dataset is defined with 50% insert, 50% update, and 0% search query operations. 

Case 2: The dataset is defined with 60% insert, 30% update, and 10% search query 

operations. 

Case 3: The dataset is defined with 40% insert, 40% update, and 20% search query 

operations. 

The operation distribution is subjective and may vary depending on the test cases and the 

experimental setup. 
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3. Experiments 

We have conducted several experiments to assess the effectiveness of the suggested 

retroactive data format. This experiment’s main goal is to examine data structures under 

diverse data set configurations, temporal environment factors, and multiple models. Details of 

the experiments and data are given in the following subsections. 

A. Experiment-1 

An experiment was conducted to measure the execution time of the Retroactive B-tree (RBT) 

under three different data distributions. The execution time of the RBT over a set of 

operations for the different degrees of the node is shown in Table 2. 

B. Experiment-2 

Experiment on architecture, list of the trees vs tree of the lists for three different data 

distributions with the Retroactive B-Tree. Figure 4 represents the first retroactive tree 

architecture, where every new version is connected as a node in a linked list. The headed node 

tree is the recent version of the tree, while the last node is the first version of the tree. The 

second architecture depicted in Figure 3 represents a single tree, and leaves relate to a list of 

operations per node. The immediate nodes connected to the leaves are the current version, 

while the last nodes, the deepest nodes, are the initial versions of the operations in the tree. 

The I/O time per operation of both variants for different node degrees is shown in Tables 3 

and 4. 

 

Figure 3. Tree of List Architecture 
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Figure 4. List of Trees Architecture; every triangle represents a tree at the i
th

 timestamp 

Results  

This section presents the experimental results of the discussed setup and a comparison with 

the existing state of the art. In this part, we compare our new bulk loading technique on 

retroactive B-Trees with iterative MVBT-LRU and MVBT+ loading in terms of performance. 

For each workload file, Figure 5 shows the total number of I/Os needed to load MVBT+, 

MVBT-LRU, and RBT. We employed a fixed memory capacity of 3.2 MB and a page size of 

8 KB. 

 

Figure 5. I/O performance comparison: Performance of MVBT-LRU, MVBT+, and RBT during 

loading (on a logarithmic scale) (memory size is 3.2 MB, the page size is 8 KB considered) 

The results of our comparison show that our new bulk loading technique on retroactive B-

trees outperforms both iterative MVBT-LRU and MVBT+ loading in terms of total number of 

I/Os required. This indicates that our technique is more efficient at handling workloads and 

managing memory resources effectively. Additionally, the fixed memory capacity and page 

size used in our experiments provide a consistent basis for comparison across different 

loading techniques. Overall, these findings suggest that our new bulk loading technique offers 

a promising solution for optimizing performance in retroactive B-tree structures. 
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The results are presented on a logarithmic scale for several I/Os. RBT outperforms MVBT 

and is substantially closer to MVBT-LRU. The ratio of I/Os needed to load MVBT-LRU and 

RBT as a function of memory size is shown in Figure 6. RBT yields its greatest results when 

used for 200 pages. RBT’s I/O performance increases as memory capacities increase and gets 

a little bit closer to MVBT-LRU. RBT works better since there are fewer live versions. The 

RBT outperformed MVBT+ for updates using file udb100 by a factor of 15. 

 

Figure 6. I/O performance comparison: The I/O Ratio of MVBT-LRU and RBT as a function of 

memory capacity, where page size = 8KB 

As memory size increases, RBT’s performance improves even further, narrowing the gap 

between RBT and MVBTLRU. Overall, the results suggest that RBT is a strong contender in 

terms of efficiency and scalability compared to other data structures like MVBT and MVBT-

LRU. Figure 7 shows the I/O ratio as a function of the page size for loading the udb50 data 

set. There are 400 pages in total set aside in the memory capacity. The middle curve shows the 

ratio of I/Os needed for loading MVBT+ to those needed for loading RBT. It is demonstrated 

that the I/O performance increases linearly with page size. RBT performs quicker than 

MVBT+ for pages that are 16 KB in size. The top curve shows the worst-case scenario for 

MVBT without an LRU buffer. The graph displays the differences between MVBT+ and RBT 

in relative performance increases. 
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Figure 7. I/O ratio for the udb50 data set as a function of page size, memory capacity m = M/B = 

400 

 

Figure 8. Experiment #1: Retroactive B-Tree Execution Time over Operations 

Along with loading, we also ran several experiments to determine the I/O effectiveness of 

bulk updates on a certain RBT, MVBT+, and MVBT-LRU. We initially made 500,000,000 

updates (or 50% of the total updates) for each data set. Then, we processed the remaining 

updates using a series of bulk updates (with a given batch size). Figure 8 shows the graph of 

the execution time of the retroactive B-Tree as a function of batch size corresponding to 

Experiment 1. The execution time over a set of operations for different node degrees is shown 

in Table 2. Two hundred pages were designated as the memory size.  
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Table 2. Experiment #1: Retroactive B-Tree Operation Execution Time 

Degree ActualTime UserTime SystemTime 

120 1.8233 1.9120 0.0447 

320 2.1223 1.9427 0.0588 

640 2.8520 2.9980 0.0582 

960 3.2650 3.3621 0.0817 

1280 3.5117 3.3689 0.0660 

Another experiment is conducted to find the optimal solution for space complexity. Two 

proposed architectures of retroactive data structures in Experiment 2 have been used. Figure 4 

represents the first retroactive tree architecture, where every new version is connected as a 

node in a linked list. The head node tree is the recent version of the tree, while the last node 

tree is the first version of the tree. The second architecture depicted in Figure 3 represents a 

single tree, and leaves relate to a list of operations per node. The immediate nodes connected 

to the leaves are the current version, while the last nodes, the deepest nodes, are the initial 

versions of the operations in the tree. The I/O time per operation of both variants for different 

node degrees is shown in Tables 3 and 4. The theoretical I/O complexity is O(k*logB n) for 

search or update and uses O(n/B) blocks for a list of trees architecture as shown in Figure 4, 

where k is the number of nodes in the linked list. And for the second architecture, as the tree 

of the lists, the expected amortized I/O complexity is O((logmn)/B +z), where z is the cost to 

maintain the list in the leaf. 

Table 3. Experiment #2: I/O time per Operation in List of Tree Architecture 

Degree I run (µs) II run(µs) III run(µs) 

120 45.497 45.874 47.156 

320 49.308 44.281 45.552 

640 46.076 46.33 52.186 

960 47.645 46.754 46.056 

1280 43.245 47.28 47.45 

Table 4. Experiment #2: I/O time per Operation in Tree of List Architecture 

Degree I run (µs) II run(µs) III run(µs) 

120 4.23 4.43 3.65 

320 4.83 5.09 5.64 

640 5.165 5.45 5.30 

960 4.80 5.96 6.03 

1280 5.48 7.76 6.96 

Discussion 

This section presents the observations from our experiments with the proposed retroactive B-

Tree for indexing problem handling in temporal databases. The proposed data structure is 

compared with the best-known existing state-of-the-art MVBT-LRU and MVBT+. The data 

structure was evaluated on different parameters such as its execution time on bulk loading, 

I/O complexity (I/O ratios), and space complexity. Our intention through the experiments was 

to have a comparative analysis of the retroactive data structures under various setups of the 
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dataset, temporal environment variables, and different models. The result section presents the 

experiment’s results over the execution time of the proposed retroactive data structure in 

Table 2. The I/O ratio of MVBT-LRU is observed to be comparatively faster than the 

retroactive B-Tree. But the amortized I/O complexity of the retroactive B-Tree is better than 

the MVBT and MVBT+. As our objective was to find a suitable retroactive data structure for 

efficient indexing with a lower I/O bound, we recommend a retroactive B-Tree. 

In the second experiment, we compared the I/O complexity of two proposed architectures 

of retroactivity in data structures. We have tested the list of trees and tree of lists models for 

implementing a retroactive B-Tree. The purpose of this experiment is to observe the minimum 

I/O access and space complexity. The list of trees model requires more space as it maintains a 

replica of the previous version, including the update in every new version. While the tree of 

lists maintains a tree at the end of a chronon, every new operation is inserted at an appropriate 

position in the lists appended with the tree’s leaves. This model does not require keeping a 

replica of the tree structure. The I/O time taken by both the architectures for the insert 

operation is tabulated in Tables 3 and 4 for the list of trees and tree of lists models, 

respectively. The result in Table 4 also includes the time to place the operation in the list, i.e., 

the time taken to maintain the skip list. The result of this experiment depicts that the tree of 

lists model is more promising than the list of trees model, as it takes less execution time for 

I/O operation and less space for maintaining the data structure. 

The only limitation with the tree of lists architecture is that it follows the lazy search 

operation because the lists maintain the operations while the search is applicable in the stable 

tree. All the operations maintained in lists must be settled, meaning the tree must complete a 

chronos duration for a relevant search result. 

Conclusion 

The research in this paper is carried out on designing, implementing, and evaluating a 

retroactive data structure to address the indexing problems in temporal databases of the 

modern era. We have attempted to model a retroactive B-tree to address issues such as solving 

the indexing problem of large databases with minimal I/O bounds, managing historical 

transactions, and pruning past errors from faulty versions of the database. This paper 

introduces the Retroactive B-tree (RBT), the first retroactive data structure that allows bulk 

loading in an asymptotically optimal number of I/Os while maintaining all worst-case 

performance requirements. 

It is comparable to the multiversion B-tree in that it provides all performance guarantees, 

like MVBT-LRU. MVBT-LRU loading is significantly quicker—by a factor linear to the 

page capacity—than earlier loading techniques, such as loading using iterative updates. 

Performance analysis is carried out based on the execution time of bulk loading, I/O 
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complexity, and space complexity. We have observed that indexing with a buffer is the most 

powerful model for existing temporal databases. Implementing a retroactive B-tree, following 

the tree-of-lists architecture, is observed to be an I/O-efficient data structure for temporal 

indexing of large databases. 

In the future, we plan to validate the proposed model with a two-dimensional range query 

and analyze the effect of chronon size in multiversion retroactive data structures. 
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