

Incorporating Retroactive Operations in Large Temporal Databases Using

Retroactive B-Tree

Santosh Kumar Verma*

*Corresponding author, Assistant Prof., Department of Computer Science and Engineering, JK

Lakshmipat University – Jaipur, Rajasthan, India. E-mail: santosh.verma@jklu.edu.in

Suman Saha

Assistant Prof., Department of Computer Science and Engineering, Jaypee University, Anoopshahr,

UP, India. E-mail: suman.saha@mail.jaypeeu.ac.in

Sanjay Goel

Prof., Department of Computer Science and Engineering, Jaypee University, Anoopshahr, UP, India.

E-mail: goelsan@yahoo.com

Journal of Information Technology Management, 2025, Vol. 17, Special Issue, pp.87-107. Received: January 17, 2025

Published by the University of Tehran, College of Management Received in revised form: March 03, 2025

doi: https://doi.org/10.22059/jitm.2025.102923 Accepted: June 13, 2025

Article Type: Research Paper Published online: August 01, 2025

© Authors

Abstract

Temporal databases, quickly rising in size, are distinguished by their capacity to maintain the

older version of data objects against actions on them, allowing logical deletions. Queries for

historical data are particularly costly due to the linear scanning of temporal versions.

Temporal data structures like time-split B-Tree or multiversion B-Tree are working

underlying the state-of-the-art temporal databases. So far, most efficient temporal data

structures are partially persistent or fully persistent, but none of them support retroactive

queries. On the other hand, efficient temporal indexing is required to address bulk loading in a

real-life application. To the best of our knowledge, there is no efficient solution for bulk

loading and updating retroactive index structures. This article seeks to offer a new data

structure, the Retroactive B-Tree (RBT), to facilitate retroactive operations in temporal

databases as well as bulk loading. It presents theoretical and empirical research and analysis

of the suggested data structure and its relevant operations. The experiments were conducted to

demonstrate the performance of the proposed retroactive B-Tree in terms of execution time,

I/O complexity, space complexity, and bulk loading. The obtained results show that indexing

doi:%20https://doi.org/10.22059/jitm.2025.102923
https://orcid.org/0000-0002-3587-1071
https://orcid.org/0000-0003-1492-2738
https://orcid.org/0000-0003-2573-1195
https://creativecommons.org/licenses/by-nc/4.0/

Incorporating Retroactive Operations in Large…/ Santosh Kumar Verma 88

https://jitm.ut.ac.ir/

with a buffer is the most powerful model for existing temporal databases for implementing a

retroactive B-Tree. The tree of lists architecture is observed as an I/O efficient data structure

for all variants of temporal indexing for large databases.

Keywords: Indexing, Retroactive Query Answering, Temporal Databases, Retroactive B-

Tree, Persistent B-Tree, Temporal Database Indexing Problem.

Introduction

Aspects of the real world are stored in the databases. Dynamic characteristics are challenging

to record and manage in traditional databases. The most recent version of the modelled

environment can only be stored using conventional database models. Future updates overwrite

the current record. As a result, it cannot access past data for predictive or trend analysis. This

limitation can hinder the ability to make informed decisions based on historical trends. To

overcome this challenge, temporal databases have been developed. These databases are

designed to handle dynamic data and allow for easy access to historical records for analysis.

By utilizing these advanced database technologies, organizations can gain valuable insights

from past data, predict future trends, and make more informed decisions. This enables them to

stay ahead of the competition and adapt quickly to changing market conditions. Ultimately, by

leveraging these modern database solutions, businesses can unlock the full potential of their

data and drive innovation in their operations.

Retroactive indexing is necessary for dynamic applications that demand ad hoc version

management, audit trail, backwards-compatible updates, and mistake repair. Users of the

application can study records through temporal queries to verify the propagation of changes,

execute rollback operations, and/or analyze previous observations. The databases that provide

the attributes help us analyze and model the entity’s dynamic evolution and locate causal or

temporal relationships between them. Due to the high cost and limited memory capacity of

disc technology, historical database searches were initially not feasible. However, large

storage capacity will become more accessible as external memory technology advances in the

future (George Copeland, 1980). More information can now be stored for a very long period.

As a result, database systems with temporal support or version management have become

increasingly popular. However, recent bibliographic research demonstrates that handling

temporal data has become more critical. Effective temporal data processing enables various

fascinating real-world applications, including advanced business analysis, fraud detection,

automation, and more. A time series database (TSDB) software system is tailored for storing

and delivering time series using related pairs of time and value. In several disciplines, time

series are also known as trends. Early time series databases were frequently used to support

industrial applications capable of reliably retaining recorded values from sensory equipment.

Journal of Information Technology Management, 2025, Vol. 17, Special Issue, 89

https://jitm.ut.ac.ir/

However, they are used to supporting a far larger range of applications nowadays. Science

and web applications both benefit from using a time-series database. With certain inherent

restrictions that will be covered later, IBM (Cynthia et al., 2010), Teradata (Anton et al.,

2016), Oracle (Ravi, 2007), and Microsoft (Lomet et al, 2008) have provided temporal

database systems. The retroactive B-Tree is a novel data structure that this article presents to

facilitate retroactive queries in temporal databases. This article makes the following key

contributions: (a) using bulk operations for retroactive index structures, this work defines the

first retroactive B-tree, an asymptotically optimal data structure. The bulk operation shows

that previous techniques required significant I/O costs for external memory access. The

objective here is to reduce the number of I/O operations with the proposed paradigm; (b) The

research findings show that our recommended techniques greatly outperform the current state

of the art in terms of performance.

The rest of the paper is structured as follows: The related work section summarizes prior

works that are still relevant and discusses the critical characteristics of temporal databases and

the shortcomings of the current state of the art that necessitate novel indexing methods.

Limitations with the existing state of the art present the problem formulation. A proposed

novel indexing model, Retroactive B-Tree, is shown in the proposed model section. The

proposed method for bulk loading is applied, and the outcomes are shown in the results

section. The last section of this paper provides a conclusion of the overall observations,

implementations, and limitations of the research carried out.

Literature Review

We go through the pertinent state-of-the-art challenges, related index structures, and bulk-

loading and bulk-updating procedures in this part. Consider the processing of temporal

inquiries as well, according to the state of the art. Traditional database systems usually

maintain a single version of the data. However, several applications, including those for

engineering design and statistics, moving-object records, governance, finance, and legal

records, as well as applications for inventory control and scheduling, require access to the

historical data (Rudolf & Mario, 1977; Gultekin & Richard, 1995; Taghva et al., 2016;

Harshit & Santosh, 2021; Ruijie et al., 2022). These applications need a custom database

structure to handle multiversion data and maintain excellent query performance and space

constraints.

The design of database structures for storing multiversion data has advanced significantly,

according to research in the field (Daniar & Bernhard, 2013; Lars Arge et al., 1999; Tuukka et

al., 2008; Tuukka et al., 2009; Lomet & Betty, 1989; Betty et al., 2004). For storing

multiversion data, a comprehensive form of B-Tree and B+Tree is implemented (Rudolf &

Mario, 1977; Daniar & Bernhard, 2013; Lars Arge et al., 1999; Tuukka et al., 2008; Douglas,

1979; Lars Arge, 2003; Lars Arge et al., 2003). These thorough implementations provide

Incorporating Retroactive Operations in Large…/ Santosh Kumar Verma 90

https://jitm.ut.ac.ir/

multiversion concurrency management and are effective for precise match queries. One can

also leverage snapshot isolation to provide multiversion concurrency control (Hal et al., 2007;

Alan et al., 2005). However, these structures were insufficient for range queries since it could

be necessary to manually scan each consecutive entry of a certain version, adding to the time

and space complexity. It is further noted that none of the models has perfect logarithmic

execution times for all operations.

The eternal database prototype employs the time-split B+tree in (Lomet et al., 2005);

however, it does not condense pages. A multiversion structure that ensures logarithmic

execution durations for all operations, but does not offer concurrency control, is the

multiversion B+ tree in (Peter et al., 1996). Other MVBT variations have been implemented

by Tuukka et al. (2008) and Jaluta et al. (2005), offering full concurrency control but with

slower updating operations. Several persistent models of index structures, bulk loading, and

bulk updates have been reported in the literature. Partial persistence is a concept that is

frequently utilized in computational geometry (Michael et al., 1993; Marios et al., 2006) and

algorithm design. In databases, the problem with partial persistence is sometimes referred to

as versioning, transaction time, and system time (Lars Arge et al., 2003). The partial persistent

model enables the operations (Leveldb, 2011; Krishna & Michels, 2012) in the present

version of the temporal database only. Commercial organizations have developed

multiversion systems, including IBM (Cynthia et al., 2010), Teradata (Anton et al., 2016),

Oracle (Ravi, 2007), and Microsoft (Lomet et al, 2008). Yufei & Dimitris (2001), Rui &

Martin (2010), and Elisa et al. (2012) have developed several persistent B-trees, allowing

range queries over older versions and providing similar query performance to a fundamental

B+tree. Only a partial-persistent model was used in the investigation of persistent B-trees. The

design of moving object database indexes is significantly impacted by MVBT and other partly

persistent B-trees (Marios et al., 2006). Retroactively speaking, the issue with bulk loading

and updates has not yet been sufficiently rectified. The first bulk loading method puts all

active nodes into memory using a partly persistent B-tree (Tuukka et al., 2009). Since

dynamic databases are significantly larger than the memory capacity, this assumption isn’t

always true. Data tuples are organized as sorted maps in key-value stores like HBase (2017)

and levelDB (2011), which also offer effective key range queries. However, it is impossible to

utilize range searches over non-key properties, such as temporal queries. However, these

systems leverage the LSM tree rather than the traditional B+ tree, which reduces the cost of

updates. The updates in LSM Tree still need to be merged with preceding data, resulting in a

significant data merging overhead and limiting the throughput for insertion. Time series

databases, like BTrDb (Michael & David, 2016), Druid (Fangjin et al., 2014), Gorilla

(Tuomas et al., 2015), Waterwheel (Li Wang et al, 2018), and MVlevelDB (Zhao et al., 2021),

are made for low-latency, real-time queries on time series data. However, due to the absence

of secondary range indexes, they do not provide effective range searches over non-temporal

properties.

Journal of Information Technology Management, 2025, Vol. 17, Special Issue, 91

https://jitm.ut.ac.ir/

Limitations of the Existing State of Art

The insights from the literature review on the current state of the art are presented in this part.

Our observations are also listed in Table 1. Temporal databases have the following

characteristics: they allow logical deletions, they preserve the earlier version of data objects

against operations on them, and their size increases quickly. Queries become quite costly

since older versions are linearly scanned. Range queries must be supported across a certain

subset of past versions and on a particular past version. Traditional B-trees and their variants

are not appropriate for efficiently indexing temporal databases because they can index only

one database snapshot. As a result, several temporal extensions for B-trees (Ruijie et al., 2022;

Daniar & Bernhard, 2013; Tuukka et al., 2008; Tuukka et al., 2009; Peter et al., 1996; Lehman

& S Bing, 1981) have been created. The MVBT (Tuukka et al., 2008; Tuukka et al., 2009) is

the first partially permanent index structure enabling temporal key-range queries, insertions,

updates, and removals. However, the MVBT or the time-split B-tree (Ruijie et al., 2022; John

et al., 2016) does not support efficient algorithms for bulk loading and bulk updates compared

to MVBT+ and MVBT-LRU (Tuukka et al., 2008, 2009). The design of efficient algorithms

for partially persistent B-Trees has been reported in the past, while very few research articles

have defined retroactive indexing problems. The persistent changes deal with the current or a

past version and require a more straightforward treatment, whereas the retroactive changes

deal with both the current and past versions. This article discusses bulk loading and updating

across retroactive B-Trees supporting the key and time range query.

Table 1. Limitations of the Existing State of Art

Existing

Systems

Query Efficiency

Base Limitations Key

Range

Time

Range

HBase (2017) Yes No LSM Tree No Support for Indexes

LevelDB

(2011)
Yes No

Used with Hive

or Mapreduce.

It may cause memory issues and no support for

query optimization.

BTrDb

(Michael &

David, 2016)

No Yes Berkeley Tree Supports Point query over a time range

Druid (Fangjin

et al., 2014)
No Yes Rest API

Supports Point query over a time range, Slow,

Update Latency is high.

Gorilla

(Tuomas et al.,

2015)

No Yes
In-memory

TSDB

Supports Point query over a time range, Slow,

Update Latency is high.

Waterwheel (Li

Wang et al,

2018)

Yes Yes LSMV Tree

Proposed models are based on the template B+

tree and applied to IoT-based data streaming.

While the Chrono size is too short, about 200ms,

the data streaming rate was also slow.

Incorporating Retroactive Operations in Large…/ Santosh Kumar Verma 92

https://jitm.ut.ac.ir/

MVlevelDB

(Zhao et al.,

2021)

Yes Yes
LSMV

Tree

Proposed models are based on the template B+

tree and applied to IoT-based data streaming.

While the Chrono size is too short, about 200ms,

and the data streaming rate was also slow.

MVBT

(Tuukka et al.,
2009)

Yes No B+ Tree

Does not support the Time range query and is

also unable to manage Buffer tree splitting and
synchronization with version management.

Indexing Problem in Temporal Databases

This paper presents a retroactive B-tree that efficiently supports mixed operations such as

insert, delete, update, and query over bulk-loaded data. This section outlines several indexing

challenges observed in the literature: (a) A major issue is the lack of attention to data splitting

and distribution among multiple nodes as the size of the versioned database grows. This study

addresses the need to synchronize node expansion with version management. (b) The

concepts of versioning, transaction time, and system time are commonly used to describe

partial persistence issues in databases (Arge, 2003). (c) To the best of our knowledge, no prior

research has explored a retroactive multiversion B-tree. In this study, we compare our

empirical findings with the current state-of-the-art approaches.

It has also been observed that the concept of multiple discrete time conceptions for keeping

or querying the temporal database has not been effectively addressed in research articles on

this subject, utilising any form of the B-Tree. Time is typically seen as a continuous variable.

The perspective of time must be discrete for a time model to be implemented on discrete

computer hardware. This viewpoint is what our paper adopts. A conceptual view is given in

the preliminaries section.

Methodology

This section presents the implementation of a retroactive B-Tree supporting retroactive

queries. This computational model works on a single processor configured with a limited

internal memory capacity and a huge external memory space. The proposed retroactive model

is achieved with the modification of the B-Tree algorithm licensed to SPDXLicense-

Identifier-GPL-2.0 (Spdx, 2020). A sample B-Tree of SPDX is depicted in Figure 1. The

suggested B-Tree data structure is bound by the following: Support a single process

execution. The maximum key size is 120 bytes, the maximum data page size is 64K, and the

maximum page size is 65024 bytes. The proposed temporal B-Tree is shown in Figure 2 with

two versions of the B-Tree. We obtained the retroactivity on the basic B-Tree model by

maintaining the various versions with the help of the following five algorithms.

Journal of Information Technology Management, 2025, Vol. 17, Special Issue, 93

https://jitm.ut.ac.ir/

1. Initialization

Algorithm 1 for retroactive B-tree initialization works by initializing the timeline variables

and memory size.

Algorithm 1: Retroactive B-Tree Initialization

procedure SET INITIAL(Btree < T > initial)

call timeline.clear()

size = 0

initial = initial

make operation(Operations<T>Operation::INITIAL, 0, -1)

end procedure

Figure 1. Traditional B-Tree

Incorporating Retroactive Operations in Large…/ Santosh Kumar Verma 94

https://jitm.ut.ac.ir/

Figure 2. Retroactive B-Tree, dotted lines indicate the version

2. Insertion

Algorithm 2 for retroactive B-Tree insertion works by inserting a value “k” into a specified

version and propagating the same till the current version of the tree by using algorithm 5 for

updating. Algorithm 5 is responsible for updating the version information of the nodes in the

B-Tree as the insertion operation propagates through different versions. This ensures that the

changes made during retroactive insertion are reflected accurately in each version of the tree.

The process starts by inserting the value “k” into the specified version of the tree using

Algorithm 2. This insertion may require splitting nodes and creating new ones to maintain the

B-Tree properties. Once the value “k” has been successfully inserted into the specified

version, Algorithm 5 is used to update the version information of all affected nodes. The

update process involves traversing from the leaf node where “k” was inserted up to the root of

the tree, adjusting version numbers as needed. By doing so, each version of the B-Tree

reflects the correct state after inserting “k”, allowing for efficient querying and modification

of past versions.

Algorithm 2: Retroactive B-Tree Insertion Algorithm

procedure INSERT(Tk, int version = −1)

make operation(Operations<T> {Operation::INSERT, k}, version)

end procedure

Journal of Information Technology Management, 2025, Vol. 17, Special Issue, 95

https://jitm.ut.ac.ir/

3. Deletion

The process to remove an element from any specified version of the retroactive B-Tree is

given in Algorithm 3. After deleting the desired element, the algorithm creates a new version

of the specified current version of the tree by using algorithm 5. This new version of the tree

will reflect the changes made by deleting the element, while still maintaining the retroactive

property of being able to query the state of the tree at any point in time. The update process

ensures that all previous versions of the tree remain unchanged, allowing for efficient and

consistent access to historical data. By following these algorithms, users can easily

manipulate and track changes in the retroactive B-Tree structure without compromising its

integrity or performance.

Algorithm 3: Retroactive B-Tree Deletion Algorithm

procedure REMOVE(Tk, int version = −1)

make operation(Operations<T> {Operation::REMOVE, k}, version)

end procedure

4. Update Operation

The update operation for the retroactive B-Tree, to modify an existing value in the tree by a

new value, is given in Algorithm 4. After updating the desired element, the algorithm creates a

new version of the specified current version of the tree by using algorithm 5. This new version

of the tree will reflect the changes made during the update operation, ensuring that the

updated retroactive B-Tree remains consistent and up to date.

The algorithm considers the structure of the tree and ensures that all necessary adjustments

are made to maintain its properties. By following this process, users can easily modify values

in a retroactive B-Tree without compromising its integrity.

Algorithm 4: Retroactive B-Tree Update Algorithm

procedure UPDATE(ToldK,TnewK, int version = −1)

make operation(Operations<T>{Operation::UPDATE, oldK, newK}, version)

end procedure

Incorporating Retroactive Operations in Large…/ Santosh Kumar Verma 96

https://jitm.ut.ac.ir/

5. Retroactive B-Tree Version Update

It is expected to maintain an updated version of the retroactive B-Tree during operations such

as inserting, deleting, or updating over a timestamp. The retroactive B-Tree version update

algorithm rolls back to the specified version under an operation, creates a new version of the

B-Tree on the specified timestamp, and propagates the result update until the current version.

This process ensures that the retroactive B-Tree remains consistent and accurate throughout

all operations, allowing for efficient retrieval of data at any point in time. By constantly

updating and propagating changes to each version of the B-Tree, users can easily access

historical data and track changes over time. This level of detail and precision is crucial for

applications that require a high level of data integrity and historical accuracy. The retroactive

B-Tree version update algorithm plays a key role in maintaining this level of consistency and

reliability within the system.

Algorithm 5: Retroactive B-Tree Version Update

procedure MAKE OPERATION(Operations<T> op, int version=-1)

version = (version == −1||version < size)? version=size:version

if version=size then

timeline.emplace back(vector<Operations<T >>{op})

inc()

else timeline[version].emplace back(op)

end if

end procedure

This process ensures that the retroactive B-Tree remains consistent and accurate

throughout all operations, allowing for efficient retrieval of data at any point in time. By

constantly updating and propagating changes to the tree, users can access historical versions

of the data while still being able to make real-time updates.

This level of flexibility and control over the data structure is crucial for applications that

require a high level of data integrity and consistency. The retroactive B-Tree version update

algorithm plays a key role in maintaining this balance between historical accuracy and real-

time updates.

Experimental Setup

In this section, we present the details about the experimental setup and the various datasets

through which empirical analysis of the proposed data structure is carried out.

Journal of Information Technology Management, 2025, Vol. 17, Special Issue, 97

https://jitm.ut.ac.ir/

1. Setup

The B-Tree algorithm licensed to SPDX-License-Identifier- GPL-2.0 (Spdx, 2020) is used to

implement all algorithms in C. By adding one more term “t” to an index item, RBT is added

on top of the current B-Tree. The empirical evaluation is carried out on an ASUS-VivoBook-

R542U workstation with an Intel Core i7-8550U and 8GB of memory running Windows OS

(Win10), a magnetic disk (HGST HTS541010B7E610, 1TB), and an SSD (Lexar SSD, 256

GB). We solely used the raw device interface in our research to prevent the operating system

from affecting the results. We conducted our experiment using pages of 4KB, 8KB, and 16KB

in size. In addition, we set the buffer cache size to be the block size of 512 KB, and the ratio

of the L1 cache is set to be 32KB, as 512 KB/16 processes. So, the size of a block for the

node size of 25 is calculated as 32/25, i.e., 1.28. Thus, we get the maximum number of

degrees for the memory B-Tree to be 1280. For each data set in our examination, we

randomly selected 10 versions and calculated their estimated checkout time. The OS page

cache was cleared before each run, and each experiment was performed five times. We took

the average of the remaining three trials after excluding the two extreme numbers from the

five trials due to experimental variation. Table 2 represents the running time of the B-Tree

bulk loading operations on the setup mentioned above.

2. Data

Our experiments use workloads like those used in earlier experimental investigations using

versioned databases (Cynthia et al., 2010; Betty et al., 2004; Elisa et al., 2012). We have

considered the index bulk loading workload in this experiment. We look at how the quantity

of update and delete operations affects I/O loading performance and space use. We have six

files to load: db50, udb0, udb25, udb50, udb75, and udb100. The performance of the

retroactive B-Tree has been evaluated using the synthetic data set of randomly generated

1,000,000,000 operations in each file. A larger workload than the specified is not considered

due to expensive execution time and constraints with the below setup. We divided the dataset

by a specific proportion of insertions, updates, and search queries to analyze the execution

time of the proposed algorithms.

Case 1: The dataset is defined with 50% insert, 50% update, and 0% search query operations.

Case 2: The dataset is defined with 60% insert, 30% update, and 10% search query

operations.

Case 3: The dataset is defined with 40% insert, 40% update, and 20% search query

operations.

The operation distribution is subjective and may vary depending on the test cases and the

experimental setup.

Incorporating Retroactive Operations in Large…/ Santosh Kumar Verma 98

https://jitm.ut.ac.ir/

3. Experiments

We have conducted several experiments to assess the effectiveness of the suggested

retroactive data format. This experiment’s main goal is to examine data structures under

diverse data set configurations, temporal environment factors, and multiple models. Details of

the experiments and data are given in the following subsections.

A. Experiment-1

An experiment was conducted to measure the execution time of the Retroactive B-tree (RBT)

under three different data distributions. The execution time of the RBT over a set of

operations for the different degrees of the node is shown in Table 2.

B. Experiment-2

Experiment on architecture, list of the trees vs tree of the lists for three different data

distributions with the Retroactive B-Tree. Figure 4 represents the first retroactive tree

architecture, where every new version is connected as a node in a linked list. The headed node

tree is the recent version of the tree, while the last node is the first version of the tree. The

second architecture depicted in Figure 3 represents a single tree, and leaves relate to a list of

operations per node. The immediate nodes connected to the leaves are the current version,

while the last nodes, the deepest nodes, are the initial versions of the operations in the tree.

The I/O time per operation of both variants for different node degrees is shown in Tables 3

and 4.

Figure 3. Tree of List Architecture

Journal of Information Technology Management, 2025, Vol. 17, Special Issue, 99

https://jitm.ut.ac.ir/

Figure 4. List of Trees Architecture; every triangle represents a tree at the i
th

 timestamp

Results

This section presents the experimental results of the discussed setup and a comparison with

the existing state of the art. In this part, we compare our new bulk loading technique on

retroactive B-Trees with iterative MVBT-LRU and MVBT+ loading in terms of performance.

For each workload file, Figure 5 shows the total number of I/Os needed to load MVBT+,

MVBT-LRU, and RBT. We employed a fixed memory capacity of 3.2 MB and a page size of

8 KB.

Figure 5. I/O performance comparison: Performance of MVBT-LRU, MVBT+, and RBT during

loading (on a logarithmic scale) (memory size is 3.2 MB, the page size is 8 KB considered)

The results of our comparison show that our new bulk loading technique on retroactive B-

trees outperforms both iterative MVBT-LRU and MVBT+ loading in terms of total number of

I/Os required. This indicates that our technique is more efficient at handling workloads and

managing memory resources effectively. Additionally, the fixed memory capacity and page

size used in our experiments provide a consistent basis for comparison across different

loading techniques. Overall, these findings suggest that our new bulk loading technique offers

a promising solution for optimizing performance in retroactive B-tree structures.

Incorporating Retroactive Operations in Large…/ Santosh Kumar Verma 100

https://jitm.ut.ac.ir/

The results are presented on a logarithmic scale for several I/Os. RBT outperforms MVBT

and is substantially closer to MVBT-LRU. The ratio of I/Os needed to load MVBT-LRU and

RBT as a function of memory size is shown in Figure 6. RBT yields its greatest results when

used for 200 pages. RBT’s I/O performance increases as memory capacities increase and gets

a little bit closer to MVBT-LRU. RBT works better since there are fewer live versions. The

RBT outperformed MVBT+ for updates using file udb100 by a factor of 15.

Figure 6. I/O performance comparison: The I/O Ratio of MVBT-LRU and RBT as a function of

memory capacity, where page size = 8KB

As memory size increases, RBT’s performance improves even further, narrowing the gap

between RBT and MVBTLRU. Overall, the results suggest that RBT is a strong contender in

terms of efficiency and scalability compared to other data structures like MVBT and MVBT-

LRU. Figure 7 shows the I/O ratio as a function of the page size for loading the udb50 data

set. There are 400 pages in total set aside in the memory capacity. The middle curve shows the

ratio of I/Os needed for loading MVBT+ to those needed for loading RBT. It is demonstrated

that the I/O performance increases linearly with page size. RBT performs quicker than

MVBT+ for pages that are 16 KB in size. The top curve shows the worst-case scenario for

MVBT without an LRU buffer. The graph displays the differences between MVBT+ and RBT

in relative performance increases.

Journal of Information Technology Management, 2025, Vol. 17, Special Issue, 101

https://jitm.ut.ac.ir/

Figure 7. I/O ratio for the udb50 data set as a function of page size, memory capacity m = M/B =

400

Figure 8. Experiment #1: Retroactive B-Tree Execution Time over Operations

Along with loading, we also ran several experiments to determine the I/O effectiveness of

bulk updates on a certain RBT, MVBT+, and MVBT-LRU. We initially made 500,000,000

updates (or 50% of the total updates) for each data set. Then, we processed the remaining

updates using a series of bulk updates (with a given batch size). Figure 8 shows the graph of

the execution time of the retroactive B-Tree as a function of batch size corresponding to

Experiment 1. The execution time over a set of operations for different node degrees is shown

in Table 2. Two hundred pages were designated as the memory size.

Incorporating Retroactive Operations in Large…/ Santosh Kumar Verma 102

https://jitm.ut.ac.ir/

Table 2. Experiment #1: Retroactive B-Tree Operation Execution Time

Degree ActualTime UserTime SystemTime

120 1.8233 1.9120 0.0447

320 2.1223 1.9427 0.0588

640 2.8520 2.9980 0.0582

960 3.2650 3.3621 0.0817

1280 3.5117 3.3689 0.0660

Another experiment is conducted to find the optimal solution for space complexity. Two

proposed architectures of retroactive data structures in Experiment 2 have been used. Figure 4

represents the first retroactive tree architecture, where every new version is connected as a

node in a linked list. The head node tree is the recent version of the tree, while the last node

tree is the first version of the tree. The second architecture depicted in Figure 3 represents a

single tree, and leaves relate to a list of operations per node. The immediate nodes connected

to the leaves are the current version, while the last nodes, the deepest nodes, are the initial

versions of the operations in the tree. The I/O time per operation of both variants for different

node degrees is shown in Tables 3 and 4. The theoretical I/O complexity is O(k*logB n) for

search or update and uses O(n/B) blocks for a list of trees architecture as shown in Figure 4,

where k is the number of nodes in the linked list. And for the second architecture, as the tree

of the lists, the expected amortized I/O complexity is O((logmn)/B +z), where z is the cost to

maintain the list in the leaf.

Table 3. Experiment #2: I/O time per Operation in List of Tree Architecture

Degree I run (µs) II run(µs) III run(µs)

120 45.497 45.874 47.156

320 49.308 44.281 45.552

640 46.076 46.33 52.186

960 47.645 46.754 46.056

1280 43.245 47.28 47.45

Table 4. Experiment #2: I/O time per Operation in Tree of List Architecture

Degree I run (µs) II run(µs) III run(µs)

120 4.23 4.43 3.65

320 4.83 5.09 5.64

640 5.165 5.45 5.30

960 4.80 5.96 6.03

1280 5.48 7.76 6.96

Discussion

This section presents the observations from our experiments with the proposed retroactive B-

Tree for indexing problem handling in temporal databases. The proposed data structure is

compared with the best-known existing state-of-the-art MVBT-LRU and MVBT+. The data

structure was evaluated on different parameters such as its execution time on bulk loading,

I/O complexity (I/O ratios), and space complexity. Our intention through the experiments was

to have a comparative analysis of the retroactive data structures under various setups of the

Journal of Information Technology Management, 2025, Vol. 17, Special Issue, 103

https://jitm.ut.ac.ir/

dataset, temporal environment variables, and different models. The result section presents the

experiment’s results over the execution time of the proposed retroactive data structure in

Table 2. The I/O ratio of MVBT-LRU is observed to be comparatively faster than the

retroactive B-Tree. But the amortized I/O complexity of the retroactive B-Tree is better than

the MVBT and MVBT+. As our objective was to find a suitable retroactive data structure for

efficient indexing with a lower I/O bound, we recommend a retroactive B-Tree.

In the second experiment, we compared the I/O complexity of two proposed architectures

of retroactivity in data structures. We have tested the list of trees and tree of lists models for

implementing a retroactive B-Tree. The purpose of this experiment is to observe the minimum

I/O access and space complexity. The list of trees model requires more space as it maintains a

replica of the previous version, including the update in every new version. While the tree of

lists maintains a tree at the end of a chronon, every new operation is inserted at an appropriate

position in the lists appended with the tree’s leaves. This model does not require keeping a

replica of the tree structure. The I/O time taken by both the architectures for the insert

operation is tabulated in Tables 3 and 4 for the list of trees and tree of lists models,

respectively. The result in Table 4 also includes the time to place the operation in the list, i.e.,

the time taken to maintain the skip list. The result of this experiment depicts that the tree of

lists model is more promising than the list of trees model, as it takes less execution time for

I/O operation and less space for maintaining the data structure.

The only limitation with the tree of lists architecture is that it follows the lazy search

operation because the lists maintain the operations while the search is applicable in the stable

tree. All the operations maintained in lists must be settled, meaning the tree must complete a

chronos duration for a relevant search result.

Conclusion

The research in this paper is carried out on designing, implementing, and evaluating a

retroactive data structure to address the indexing problems in temporal databases of the

modern era. We have attempted to model a retroactive B-tree to address issues such as solving

the indexing problem of large databases with minimal I/O bounds, managing historical

transactions, and pruning past errors from faulty versions of the database. This paper

introduces the Retroactive B-tree (RBT), the first retroactive data structure that allows bulk

loading in an asymptotically optimal number of I/Os while maintaining all worst-case

performance requirements.

It is comparable to the multiversion B-tree in that it provides all performance guarantees,

like MVBT-LRU. MVBT-LRU loading is significantly quicker—by a factor linear to the

page capacity—than earlier loading techniques, such as loading using iterative updates.

Performance analysis is carried out based on the execution time of bulk loading, I/O

Incorporating Retroactive Operations in Large…/ Santosh Kumar Verma 104

https://jitm.ut.ac.ir/

complexity, and space complexity. We have observed that indexing with a buffer is the most

powerful model for existing temporal databases. Implementing a retroactive B-tree, following

the tree-of-lists architecture, is observed to be an I/O-efficient data structure for temporal

indexing of large databases.

In the future, we plan to validate the proposed model with a two-dimensional range query

and analyze the effect of chronon size in multiversion retroactive data structures.

 Conflict of interest

The authors declare no potential conflict of interest regarding the publication of this work. In

addition, the ethical issues including plagiarism, informed consent, misconduct, data

fabrication and, or falsification, double publication and, or submission, and redundancy have

been completely witnessed by the authors.

Funding

The author(s) received no financial support for the research, authorship, and/or publication of

this article.

Journal of Information Technology Management, 2025, Vol. 17, Special Issue, 105

https://jitm.ut.ac.ir/

References

Achakeev, D., & Seeger, B. (2013). Efficient bulk updates on multiversion B-trees. Proceedings of the

VLDB Endowment, 6(14), 1834–1845. https://dl.acm.org/doi/pdf/10.14778/2556549.2556566

Andersen, M. P., & Culler, D. E. (2016). BTrDB: Optimizing storage system design for timeseries

processing. In 14th USENIX Conference on File and Storage Technologies (FAST 16) (pp. 39–52).

https://dl.acm.org/doi/10.5555/2930583.2930587

Arge, L. (2003). The buffer tree: A technique for designing batched external data structures.

Algorithmica, 37, 1–24. https://doi.org/10.1007/s00453-003-1021-x

Arge, L., Danner, A., & Teh, S. M. (2003). I/O-efficient point location using persistent B-trees.
Journal of Experimental Algorithmics (JEA), 8, 1–2.

https://dl.acm.org/doi/pdf/10.1145/996546.996549

Arge, L., Hinrichs, K. H., Vahrenhold, J., & Vitter, J. S. (2002). Efficient bulk operations on dynamic

R-trees. Algorithmica, 33, 104–128. https://doi.org/10.1007/s00453-001-0107-6

Bayer, R., & Schkolnick, M. (1977). Concurrency of operations on B-trees. Acta Informatica, 9, 1–21.

https://link.springer.com/article/10.1007/BF00263762

Berenson, H., Bernstein, P., Gray, J., Melton, J., O'Neil, E., & O'Neil, P. (2007). A critique of ANSI

SQL isolation levels. arXiv preprint cs/0701157. https://arxiv.org/pdf/cs/0701157

Bertino, E., Ooi, B. C., Sacks-Davis, R., Tan, K. L., Zobel, J., Shidlovsky, B., & Andronico, D.

(2012). Indexing techniques for advanced database systems (Vol. 8). Springer Science & Business

Media.

Comer, D. (1979). Ubiquitous B-tree. ACM Computing Surveys (CSUR), 11(2), 121–137.

https://dl.acm.org/doi/pdf/10.1145/356770.356776

Copeland, G. (1980, March). What if mass storage were free? In Proceedings of the Fifth Workshop
on Computer Architecture for Non-Numeric Processing (pp. 1–7).

https://dl.acm.org/doi/pdf/10.1145/800083.802685

Dignös, A., Böhlen, M. H., Gamper, J., & Jensen, C. S. (2016). Extending the kernel of relational
DBMS with comprehensive support for sequenced temporal queries. ACM Transactions on

Database Systems (TODS), 41(4), 1–46. https://dl.acm.org/doi/pdf/10.1145/2967608

Fekete, A., Liarokapis, D., O'Neil, E., O'Neil, P., & Shasha, D. (2005). Making snapshot isolation
serializable. ACM Transactions on Database Systems (TODS), 30(2), 492–528.

https://dl.acm.org/doi/pdf/10.1145/1071610.1071615

Goodrich, M. T., Tsay, J. J., Vengroff, D. E., & Vitter, J. S. (1993, November). External-memory

computational geometry. In Proceedings of 1993 IEEE 34th Annual Foundations of Computer

Science (pp. 714–723). IEEE. https://doi.org/10.1109/SFCS.1993.366816

Haapasalo, T. K., Jaluta, I. M., Sippu, S. S., & Soisalon-Soininen, E. O. (2008, October). Concurrency

control and recovery for multiversion database structures. In Proceedings of the 2nd PhD
Workshop on Information and Knowledge Management (pp. 73–80).

https://dl.acm.org/doi/pdf/10.1145/1458550.1458563

Haapasalo, T., Jaluta, I., Seeger, B., Sippu, S., & Soisalon-Soininen, E. (2009, March). Transactions

on the multiversion B+-tree. In Proceedings of the 12th International Conference on Extending
Database Technology: Advances in Database Technology (pp. 1064–1075).

https://dl.acm.org/doi/pdf/10.1145/1516360.1516482

Hadjieleftheriou, M., Kollios, G., Tsotras, V. J., & Gunopulos, D. (2006). Indexing spatiotemporal

archives. The VLDB Journal, 15, 143–164. https://doi.org/10.1007/s00778-004-0151-3

https://dl.acm.org/doi/pdf/10.14778/2556549.2556566
https://dl.acm.org/doi/10.5555/2930583.2930587
https://doi.org/10.1007/s00453-003-1021-x
https://dl.acm.org/doi/pdf/10.1145/996546.996549
https://doi.org/10.1007/s00453-001-0107-6
https://link.springer.com/article/10.1007/BF00263762
https://arxiv.org/pdf/cs/0701157
https://dl.acm.org/doi/pdf/10.1145/356770.356776
https://dl.acm.org/doi/pdf/10.1145/800083.802685
https://dl.acm.org/doi/pdf/10.1145/2967608
https://dl.acm.org/doi/pdf/10.1145/1071610.1071615
https://dl.acm.org/doi/pdf/10.1145/1458550.1458563
https://dl.acm.org/doi/pdf/10.1145/1516360.1516482
https://doi.org/10.1007/s00778-004-0151-3

Incorporating Retroactive Operations in Large…/ Santosh Kumar Verma 106

https://jitm.ut.ac.ir/

Harshit, S., & Santosh, V. (2021). B-tree versus buffer tree: A review of I/O efficient algorithms. In

Intelligent Systems: Proceedings of SCIS 2021 (pp. 417–425).

https://link.springer.com/chapter/10.1007/978-981-16-2248-9_40

HBase. (2017). http://hbase.apache.org

Jaluta, I., Sippu, S., & Soisalon-Soininen, E. (2005). Concurrency control and recovery for balanced

B-link trees. The VLDB Journal, 14, 257–277. https://doi.org/10.1007/s00778-004-0140-6

John, A., Sugumaran, M., & Rajesh, R. S. (2016). Indexing and query processing techniques in spatio-

temporal data. ICTACT Journal on Soft Computing, 6(3), 1198–1217.

https://doi.org/10.21917/ijsc.2016.0167

Kulkarni, K., & Michels, J. E. (2012). Temporal features in SQL: 2011. ACM SIGMOD Record, 41(3),

34–43. https://dl.acm.org/doi/pdf/10.1145/2380776.2380786

Lehman, P. L., & Yao, S. B. (1981). Efficient locking for concurrent operations on B-trees. ACM
Transactions on Database Systems (TODS), 6(4), 650–670.

https://dl.acm.org/doi/pdf/10.1145/319628.319663

Leveldb. (2011). https://github.com/google/leveldb

Lomet, D., & Salzberg, B. (1989). Access methods for multiversion data. ACM SIGMOD Record,

18(2), 315–324. https://dl.acm.org/doi/pdf/10.1145/66926.66956

Lomet, D., Barga, R., Mokbel, M. F., Shegalov, G., Wang, R., & Zhu, Y. (2005, June). Immortal DB:

Transaction time support for SQL Server. In Proceedings of the 2005 ACM SIGMOD International
Conference on Management of Data (pp. 939–941).

https://dl.acm.org/doi/pdf/10.1145/1066157.1066295

Lomet, D., Hong, M., Nehme, R., & Zhang, R. (2008). Transaction time indexing with version
compression. Proceedings of the VLDB Endowment, 1(1), 870–881.

https://dl.acm.org/doi/pdf/10.14778/1453856.1453951

Ozsoyoglu, G., & Snodgrass, R. T. (1995). Temporal and real-time databases: A survey. IEEE

Transactions on Knowledge and Data Engineering, 7(4), 513–532.

https://doi.org/10.1109/69.404027

Pelkonen, T., Franklin, S., Teller, J., Cavallaro, P., Huang, Q., Meza, J., & Veeraraghavan, K. (2015).

Gorilla: A fast, scalable, in-memory time series database. Proceedings of the VLDB Endowment,

8(12), 1816–1827. https://dl.acm.org/doi/pdf/10.14778/2824032.2824078

Rajamani, R. (2007). Oracle total recall/flashback data archive. Technical report, Oracle.

https://forseurope.wordpress.com/wp-content/uploads/2010/01/flashback-data-archive-

whitepaper.pdf

Salzberg, B., Jiang, L., Lomet, D., Barrena, M., Shan, J., & Kanoulas, E. (2004). A framework for

access methods for versioned data. In Advances in Database Technology—EDBT 2004: 9th

International Conference on Extending Database Technology (pp. 730–747). Springer.

https://doi.org/10.1007/978-3-540-24741-8_42

Saracco, C. M., Nicola, M., & Gandhi, L. (2010). A matter of time: Temporal data management in

DB2 for z. IBM Corporation, 7.

https://cs.ulb.ac.be/public/_media/teaching/infoh415/a_matter_of_time.pdf

Spdx. (2020). GNU general public license v2.0: B+tree basics.

https://github.com/torvalds/linux/blob/master/include/linux/btree.h

Taghva, M. R., Mansouri, T., Feizi, K., & Akhgar, B. (2016). Fraud detection in credit card
transactions; using parallel processing of anomalies in big data. Journal of Information Technology

Management, 8(3), 477–498. https://doi.org/10.22059/jitm.2016.57818

https://link.springer.com/chapter/10.1007/978-981-16-2248-9_40
http://hbase.apache.org/
https://doi.org/10.1007/s00778-004-0140-6
https://dl.acm.org/doi/pdf/10.1145/2380776.2380786
https://dl.acm.org/doi/pdf/10.1145/319628.319663
https://github.com/google/leveldb
https://dl.acm.org/doi/pdf/10.1145/66926.66956
https://dl.acm.org/doi/pdf/10.1145/1066157.1066295
https://dl.acm.org/doi/pdf/10.14778/1453856.1453951
https://dl.acm.org/doi/pdf/10.14778/2824032.2824078
https://forseurope.wordpress.com/wp-content/uploads/2010/01/flashback-data-archive-whitepaper.pdf
https://forseurope.wordpress.com/wp-content/uploads/2010/01/flashback-data-archive-whitepaper.pdf
https://doi.org/10.1007/978-3-540-24741-8_42
https://cs.ulb.ac.be/public/_media/teaching/infoh415/a_matter_of_time.pdf
https://github.com/torvalds/linux/blob/master/include/linux/btree.h

Journal of Information Technology Management, 2025, Vol. 17, Special Issue, 107

https://jitm.ut.ac.ir/

Tao, Y., & Papadias, D. (2001). The MV3R-tree: A spatio-temporal access method for timestamp and

interval queries. In Proceedings of Very Large Data Bases Conference (VLDB), 11–14 September,

Rome. https://hdl.handle.net/1783.1/168

Tian, R., Zhai, H., Zhang, W., Wang, F., & Guan, Y. (2022). A survey of spatio-temporal big data
indexing methods in distributed environment. IEEE Journal of Selected Topics in Applied Earth

Observations and Remote Sensing, 15, 4132–4155. https://doi.org/10.1109/JSTARS.2022.3175657

Wang, L., Cai, R., Fu, T. Z., He, J., Lu, Z., Winslett, M., & Zhang, Z. (2018, April). Waterwheel:
Realtime indexing and temporal range query processing over massive data streams. In 2018 IEEE

34th International Conference on Data Engineering (ICDE) (pp. 269–280). IEEE.

https://doi.org/10.1109/ICDE.2018.00033

Widmayer, P., Becker, B., Gschwind, D. I. S., Ohler, D. W. I. T., & Seeger, B. (1996). An

asymptotically optimal multiversion B-tree. Very Large Data Bases Journal. Retrieved from

https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=6f4cf2dd0d8af70af29ae857353

badad12426183

Yang, F., Tschetter, E., Léauté, X., Ray, N., Merlino, G., & Ganguli, D. (2014, June). Druid: A real-

time analytical data store. In Proceedings of the 2014 ACM SIGMOD international conference on

Management of data (pp. 157–168). https://dl.acm.org/doi/pdf/10.1145/2588555.2595631

Zhang, R., & Stradling, M. (2010). The HV-tree: A memory hierarchy aware version index.

Proceedings of the VLDB Endowment, 3(1-2), 397–408.

https://dl.acm.org/doi/pdf/10.14778/1920841.1920894

Zhao, X., Lam, K. Y., Zhu, C., Chow, C. Y., & Kuo, T. W. (2021). MVLevelDB: Using log-structured
tree to support temporal queries in IoT. IEEE Internet of Things Journal, 9(10), 7815–7825.

https://doi.org/10.1109/JIOT.2021.3113994

Bibliographic information of this paper for citing:

Verma, Santosh Kumar; Saha, Suman & Goel, Sanjay (2025). Incorporating Retroactive

Operations in Large temporal Databases Using Retroactive B-Tree. Journal of Information

Technology Management, 17 (Special Issue), 87-107.

https://doi.org/10.22059/jitm.2025.102923

Copyright © 2025, Santosh Kumar Verma, Suman Saha and Sanjay Goel

https://hdl.handle.net/1783.1/168
https://doi.org/10.1109/JSTARS.2022.3175657
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=6f4cf2dd0d8af70af29ae857353badad12426183
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=6f4cf2dd0d8af70af29ae857353badad12426183
https://dl.acm.org/doi/pdf/10.1145/2588555.2595631
https://dl.acm.org/doi/pdf/10.14778/1920841.1920894
https://doi.org/10.22059/jitm.2025.102923

